Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7744,2,Mod(1,7744)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7744.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7744 = 2^{6} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7744.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(61.8361513253\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 121) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $N(\mathrm{U}(1))$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 7744.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000 | 0.577350 | 0.288675 | − | 0.957427i | \(-0.406785\pi\) | ||||
0.288675 | + | 0.957427i | \(0.406785\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.00000 | 1.34164 | 0.670820 | − | 0.741620i | \(-0.265942\pi\) | ||||
0.670820 | + | 0.741620i | \(0.265942\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −2.00000 | −0.666667 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 3.00000 | 0.774597 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −9.00000 | −1.87663 | −0.938315 | − | 0.345782i | \(-0.887614\pi\) | ||||
−0.938315 | + | 0.345782i | \(0.887614\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 4.00000 | 0.800000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −5.00000 | −0.962250 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −5.00000 | −0.898027 | −0.449013 | − | 0.893525i | \(-0.648224\pi\) | ||||
−0.449013 | + | 0.893525i | \(0.648224\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −7.00000 | −1.15079 | −0.575396 | − | 0.817875i | \(-0.695152\pi\) | ||||
−0.575396 | + | 0.817875i | \(0.695152\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | −6.00000 | −0.894427 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.0000 | −1.75038 | −0.875190 | − | 0.483779i | \(-0.839264\pi\) | ||||
−0.875190 | + | 0.483779i | \(0.839264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 15.0000 | 1.95283 | 0.976417 | − | 0.215894i | \(-0.0692665\pi\) | ||||
0.976417 | + | 0.215894i | \(0.0692665\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −13.0000 | −1.58820 | −0.794101 | − | 0.607785i | \(-0.792058\pi\) | ||||
−0.794101 | + | 0.607785i | \(0.792058\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −9.00000 | −1.08347 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −3.00000 | −0.356034 | −0.178017 | − | 0.984027i | \(-0.556968\pi\) | ||||
−0.178017 | + | 0.984027i | \(0.556968\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 4.00000 | 0.461880 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −9.00000 | −0.953998 | −0.476999 | − | 0.878904i | \(-0.658275\pi\) | ||||
−0.476999 | + | 0.878904i | \(0.658275\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | −5.00000 | −0.518476 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 17.0000 | 1.72609 | 0.863044 | − | 0.505128i | \(-0.168555\pi\) | ||||
0.863044 | + | 0.505128i | \(0.168555\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −7.00000 | −0.664411 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 21.0000 | 1.97551 | 0.987757 | − | 0.156001i | \(-0.0498603\pi\) | ||||
0.987757 | + | 0.156001i | \(0.0498603\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −27.0000 | −2.51776 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 0 | 0 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −3.00000 | −0.268328 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | −15.0000 | −1.29099 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −3.00000 | −0.256307 | −0.128154 | − | 0.991754i | \(-0.540905\pi\) | ||||
−0.128154 | + | 0.991754i | \(0.540905\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −12.0000 | −1.01058 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −7.00000 | −0.577350 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −15.0000 | −1.20483 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 23.0000 | 1.83560 | 0.917800 | − | 0.397043i | \(-0.129964\pi\) | ||||
0.917800 | + | 0.397043i | \(0.129964\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −6.00000 | −0.475831 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 15.0000 | 1.12747 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −21.0000 | −1.56961 | −0.784807 | − | 0.619740i | \(-0.787238\pi\) | ||||
−0.784807 | + | 0.619740i | \(0.787238\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 25.0000 | 1.85824 | 0.929118 | − | 0.369784i | \(-0.120568\pi\) | ||||
0.929118 | + | 0.369784i | \(0.120568\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −21.0000 | −1.54395 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −15.0000 | −1.08536 | −0.542681 | − | 0.839939i | \(-0.682591\pi\) | ||||
−0.542681 | + | 0.839939i | \(0.682591\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −13.0000 | −0.916949 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 18.0000 | 1.25109 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | −3.00000 | −0.205557 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −1.00000 | −0.0669650 | −0.0334825 | − | 0.999439i | \(-0.510660\pi\) | ||||
−0.0334825 | + | 0.999439i | \(0.510660\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −8.00000 | −0.533333 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 5.00000 | 0.330409 | 0.165205 | − | 0.986259i | \(-0.447172\pi\) | ||||
0.165205 | + | 0.986259i | \(0.447172\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −36.0000 | −2.34838 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 16.0000 | 1.02640 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −21.0000 | −1.34164 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 27.0000 | 1.70422 | 0.852112 | − | 0.523359i | \(-0.175321\pi\) | ||||
0.852112 | + | 0.523359i | \(0.175321\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 18.0000 | 1.12281 | 0.561405 | − | 0.827541i | \(-0.310261\pi\) | ||||
0.561405 | + | 0.827541i | \(0.310261\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −18.0000 | −1.10573 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | −9.00000 | −0.550791 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −30.0000 | −1.82913 | −0.914566 | − | 0.404436i | \(-0.867468\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 10.0000 | 0.598684 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 17.0000 | 0.996558 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 45.0000 | 2.62000 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −4.00000 | −0.227552 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 19.0000 | 1.07394 | 0.536972 | − | 0.843600i | \(-0.319568\pi\) | ||||
0.536972 | + | 0.843600i | \(0.319568\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 27.0000 | 1.51647 | 0.758236 | − | 0.651981i | \(-0.226062\pi\) | ||||
0.758236 | + | 0.651981i | \(0.226062\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −35.0000 | −1.92377 | −0.961887 | − | 0.273447i | \(-0.911836\pi\) | ||||
−0.961887 | + | 0.273447i | \(0.911836\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 14.0000 | 0.767195 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −39.0000 | −2.13080 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 21.0000 | 1.14056 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | −27.0000 | −1.45363 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −9.00000 | −0.479022 | −0.239511 | − | 0.970894i | \(-0.576987\pi\) | ||||
−0.239511 | + | 0.970894i | \(0.576987\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −9.00000 | −0.477670 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −37.0000 | −1.93138 | −0.965692 | − | 0.259690i | \(-0.916380\pi\) | ||||
−0.965692 | + | 0.259690i | \(0.916380\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | −3.00000 | −0.154919 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 25.0000 | 1.28416 | 0.642082 | − | 0.766636i | \(-0.278071\pi\) | ||||
0.642082 | + | 0.766636i | \(0.278071\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 39.0000 | 1.99281 | 0.996403 | − | 0.0847358i | \(-0.0270046\pi\) | ||||
0.996403 | + | 0.0847358i | \(0.0270046\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 15.0000 | 0.760530 | 0.380265 | − | 0.924878i | \(-0.375833\pi\) | ||||
0.380265 | + | 0.924878i | \(0.375833\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −2.00000 | −0.100377 | −0.0501886 | − | 0.998740i | \(-0.515982\pi\) | ||||
−0.0501886 | + | 0.998740i | \(0.515982\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 30.0000 | 1.49813 | 0.749064 | − | 0.662497i | \(-0.230503\pi\) | ||||
0.749064 | + | 0.662497i | \(0.230503\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 3.00000 | 0.149071 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −3.00000 | −0.147979 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −24.0000 | −1.17248 | −0.586238 | − | 0.810139i | \(-0.699392\pi\) | ||||
−0.586238 | + | 0.810139i | \(0.699392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 24.0000 | 1.16692 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 29.0000 | 1.39365 | 0.696826 | − | 0.717241i | \(-0.254595\pi\) | ||||
0.696826 | + | 0.717241i | \(0.254595\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 14.0000 | 0.666667 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −21.0000 | −0.997740 | −0.498870 | − | 0.866677i | \(-0.666252\pi\) | ||||
−0.498870 | + | 0.866677i | \(0.666252\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −27.0000 | −1.27992 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 39.0000 | 1.84052 | 0.920262 | − | 0.391303i | \(-0.127976\pi\) | ||||
0.920262 | + | 0.391303i | \(0.127976\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −31.0000 | −1.44069 | −0.720346 | − | 0.693615i | \(-0.756017\pi\) | ||||
−0.720346 | + | 0.693615i | \(0.756017\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | −15.0000 | −0.695608 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 3.00000 | 0.138823 | 0.0694117 | − | 0.997588i | \(-0.477888\pi\) | ||||
0.0694117 | + | 0.997588i | \(0.477888\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 23.0000 | 1.05978 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 12.0000 | 0.549442 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 51.0000 | 2.31579 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 43.0000 | 1.94852 | 0.974258 | − | 0.225436i | \(-0.0723806\pi\) | ||||
0.974258 | + | 0.225436i | \(0.0723806\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 16.0000 | 0.723545 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −40.0000 | −1.79065 | −0.895323 | − | 0.445418i | \(-0.853055\pi\) | ||||
−0.895323 | + | 0.445418i | \(0.853055\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −13.0000 | −0.577350 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 45.0000 | 1.99459 | 0.997295 | − | 0.0735034i | \(-0.0234180\pi\) | ||||
0.997295 | + | 0.0735034i | \(0.0234180\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −12.0000 | −0.528783 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −15.0000 | −0.657162 | −0.328581 | − | 0.944476i | \(-0.606570\pi\) | ||||
−0.328581 | + | 0.944476i | \(0.606570\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 58.0000 | 2.52174 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −30.0000 | −1.30189 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | −21.0000 | −0.906217 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 25.0000 | 1.07285 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | −21.0000 | −0.891400 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 63.0000 | 2.65043 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | −15.0000 | −0.626634 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −36.0000 | −1.50130 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −47.0000 | −1.95664 | −0.978318 | − | 0.207109i | \(-0.933594\pi\) | ||||
−0.978318 | + | 0.207109i | \(0.933594\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 48.0000 | 1.98117 | 0.990586 | − | 0.136892i | \(-0.0437113\pi\) | ||||
0.990586 | + | 0.136892i | \(0.0437113\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −20.0000 | −0.818546 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −36.0000 | −1.47092 | −0.735460 | − | 0.677568i | \(-0.763034\pi\) | ||||
−0.735460 | + | 0.677568i | \(0.763034\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 26.0000 | 1.05880 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −42.0000 | −1.69086 | −0.845428 | − | 0.534089i | \(-0.820655\pi\) | ||||
−0.845428 | + | 0.534089i | \(0.820655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 1.00000 | 0.0401934 | 0.0200967 | − | 0.999798i | \(-0.493603\pi\) | ||||
0.0200967 | + | 0.999798i | \(0.493603\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 45.0000 | 1.80579 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −29.0000 | −1.16000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 7.00000 | 0.278666 | 0.139333 | − | 0.990246i | \(-0.455504\pi\) | ||||
0.139333 | + | 0.990246i | \(0.455504\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 6.00000 | 0.237356 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −45.0000 | −1.77739 | −0.888697 | − | 0.458496i | \(-0.848388\pi\) | ||||
−0.888697 | + | 0.458496i | \(0.848388\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −41.0000 | −1.61688 | −0.808441 | − | 0.588577i | \(-0.799688\pi\) | ||||
−0.808441 | + | 0.588577i | \(0.799688\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −27.0000 | −1.06148 | −0.530740 | − | 0.847535i | \(-0.678086\pi\) | ||||
−0.530740 | + | 0.847535i | \(0.678086\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −51.0000 | −1.99578 | −0.997892 | − | 0.0648948i | \(-0.979329\pi\) | ||||
−0.997892 | + | 0.0648948i | \(0.979329\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −13.0000 | −0.505641 | −0.252821 | − | 0.967513i | \(-0.581358\pi\) | ||||
−0.252821 | + | 0.967513i | \(0.581358\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −1.00000 | −0.0386622 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −20.0000 | −0.769800 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −24.0000 | −0.918334 | −0.459167 | − | 0.888350i | \(-0.651852\pi\) | ||||
−0.459167 | + | 0.888350i | \(0.651852\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −9.00000 | −0.343872 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 5.00000 | 0.190762 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −17.0000 | −0.646710 | −0.323355 | − | 0.946278i | \(-0.604811\pi\) | ||||
−0.323355 | + | 0.946278i | \(0.604811\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | −36.0000 | −1.35584 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −19.0000 | −0.713560 | −0.356780 | − | 0.934188i | \(-0.616125\pi\) | ||||
−0.356780 | + | 0.934188i | \(0.616125\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 45.0000 | 1.68526 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 51.0000 | 1.90198 | 0.950990 | − | 0.309223i | \(-0.100069\pi\) | ||||
0.950990 | + | 0.309223i | \(0.100069\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −53.0000 | −1.96566 | −0.982831 | − | 0.184510i | \(-0.940930\pi\) | ||||
−0.982831 | + | 0.184510i | \(0.940930\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 13.0000 | 0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | −21.0000 | −0.774597 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −23.0000 | −0.839282 | −0.419641 | − | 0.907690i | \(-0.637844\pi\) | ||||
−0.419641 | + | 0.907690i | \(0.637844\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 27.0000 | 0.983935 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.0000 | 1.38113 | 0.690567 | − | 0.723269i | \(-0.257361\pi\) | ||||
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 18.0000 | 0.648254 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −54.0000 | −1.94225 | −0.971123 | − | 0.238581i | \(-0.923318\pi\) | ||||
−0.971123 | + | 0.238581i | \(0.923318\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −20.0000 | −0.718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 69.0000 | 2.46272 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | −18.0000 | −0.638394 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 3.00000 | 0.106265 | 0.0531327 | − | 0.998587i | \(-0.483079\pi\) | ||||
0.0531327 | + | 0.998587i | \(0.483079\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 18.0000 | 0.635999 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | −30.0000 | −1.05605 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 48.0000 | 1.68137 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −49.0000 | −1.70803 | −0.854016 | − | 0.520246i | \(-0.825840\pi\) | ||||
−0.854016 | + | 0.520246i | \(0.825840\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −29.0000 | −1.00721 | −0.503606 | − | 0.863934i | \(-0.667994\pi\) | ||||
−0.503606 | + | 0.863934i | \(0.667994\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 25.0000 | 0.864126 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −45.0000 | −1.55357 | −0.776786 | − | 0.629764i | \(-0.783151\pi\) | ||||
−0.776786 | + | 0.629764i | \(0.783151\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −39.0000 | −1.34164 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 63.0000 | 2.15961 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 31.0000 | 1.05771 | 0.528853 | − | 0.848713i | \(-0.322622\pi\) | ||||
0.528853 | + | 0.848713i | \(0.322622\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −36.0000 | −1.22545 | −0.612727 | − | 0.790295i | \(-0.709928\pi\) | ||||
−0.612727 | + | 0.790295i | \(0.709928\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | −17.0000 | −0.577350 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | −34.0000 | −1.15073 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 57.0000 | 1.92038 | 0.960189 | − | 0.279350i | \(-0.0901189\pi\) | ||||
0.960189 | + | 0.279350i | \(0.0901189\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 56.0000 | 1.88455 | 0.942275 | − | 0.334840i | \(-0.108682\pi\) | ||||
0.942275 | + | 0.334840i | \(0.108682\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 45.0000 | 1.51266 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −63.0000 | −2.10586 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 75.0000 | 2.49308 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −8.00000 | −0.265636 | −0.132818 | − | 0.991140i | \(-0.542403\pi\) | ||||
−0.132818 | + | 0.991140i | \(0.542403\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −60.0000 | −1.98789 | −0.993944 | − | 0.109885i | \(-0.964952\pi\) | ||||
−0.993944 | + | 0.109885i | \(0.964952\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −28.0000 | −0.920634 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 8.00000 | 0.262754 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 30.0000 | 0.984268 | 0.492134 | − | 0.870519i | \(-0.336217\pi\) | ||||
0.492134 | + | 0.870519i | \(0.336217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | −12.0000 | −0.392862 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 19.0000 | 0.620042 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −57.0000 | −1.85225 | −0.926126 | − | 0.377215i | \(-0.876882\pi\) | ||||
−0.926126 | + | 0.377215i | \(0.876882\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 27.0000 | 0.875535 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −45.0000 | −1.45617 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −6.00000 | −0.193548 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 45.0000 | 1.44412 | 0.722059 | − | 0.691831i | \(-0.243196\pi\) | ||||
0.722059 | + | 0.691831i | \(0.243196\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −27.0000 | −0.863807 | −0.431903 | − | 0.901920i | \(-0.642158\pi\) | ||||
−0.431903 | + | 0.901920i | \(0.642158\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 51.0000 | 1.62665 | 0.813324 | − | 0.581811i | \(-0.197656\pi\) | ||||
0.813324 | + | 0.581811i | \(0.197656\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −20.0000 | −0.635321 | −0.317660 | − | 0.948205i | \(-0.602897\pi\) | ||||
−0.317660 | + | 0.948205i | \(0.602897\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | −35.0000 | −1.11069 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −60.0000 | −1.90213 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 35.0000 | 1.10735 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7744.2.a.bb.1.1 | 1 | ||
4.3 | odd | 2 | 7744.2.a.n.1.1 | 1 | |||
8.3 | odd | 2 | 1936.2.a.h.1.1 | 1 | |||
8.5 | even | 2 | 121.2.a.b.1.1 | ✓ | 1 | ||
11.10 | odd | 2 | CM | 7744.2.a.bb.1.1 | 1 | ||
24.5 | odd | 2 | 1089.2.a.g.1.1 | 1 | |||
40.29 | even | 2 | 3025.2.a.d.1.1 | 1 | |||
44.43 | even | 2 | 7744.2.a.n.1.1 | 1 | |||
56.13 | odd | 2 | 5929.2.a.e.1.1 | 1 | |||
88.5 | even | 10 | 121.2.c.c.3.1 | 4 | |||
88.13 | odd | 10 | 121.2.c.c.81.1 | 4 | |||
88.21 | odd | 2 | 121.2.a.b.1.1 | ✓ | 1 | ||
88.29 | odd | 10 | 121.2.c.c.27.1 | 4 | |||
88.37 | even | 10 | 121.2.c.c.27.1 | 4 | |||
88.43 | even | 2 | 1936.2.a.h.1.1 | 1 | |||
88.53 | even | 10 | 121.2.c.c.81.1 | 4 | |||
88.61 | odd | 10 | 121.2.c.c.3.1 | 4 | |||
88.69 | even | 10 | 121.2.c.c.9.1 | 4 | |||
88.85 | odd | 10 | 121.2.c.c.9.1 | 4 | |||
264.197 | even | 2 | 1089.2.a.g.1.1 | 1 | |||
440.109 | odd | 2 | 3025.2.a.d.1.1 | 1 | |||
616.461 | even | 2 | 5929.2.a.e.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
121.2.a.b.1.1 | ✓ | 1 | 8.5 | even | 2 | ||
121.2.a.b.1.1 | ✓ | 1 | 88.21 | odd | 2 | ||
121.2.c.c.3.1 | 4 | 88.5 | even | 10 | |||
121.2.c.c.3.1 | 4 | 88.61 | odd | 10 | |||
121.2.c.c.9.1 | 4 | 88.69 | even | 10 | |||
121.2.c.c.9.1 | 4 | 88.85 | odd | 10 | |||
121.2.c.c.27.1 | 4 | 88.29 | odd | 10 | |||
121.2.c.c.27.1 | 4 | 88.37 | even | 10 | |||
121.2.c.c.81.1 | 4 | 88.13 | odd | 10 | |||
121.2.c.c.81.1 | 4 | 88.53 | even | 10 | |||
1089.2.a.g.1.1 | 1 | 24.5 | odd | 2 | |||
1089.2.a.g.1.1 | 1 | 264.197 | even | 2 | |||
1936.2.a.h.1.1 | 1 | 8.3 | odd | 2 | |||
1936.2.a.h.1.1 | 1 | 88.43 | even | 2 | |||
3025.2.a.d.1.1 | 1 | 40.29 | even | 2 | |||
3025.2.a.d.1.1 | 1 | 440.109 | odd | 2 | |||
5929.2.a.e.1.1 | 1 | 56.13 | odd | 2 | |||
5929.2.a.e.1.1 | 1 | 616.461 | even | 2 | |||
7744.2.a.n.1.1 | 1 | 4.3 | odd | 2 | |||
7744.2.a.n.1.1 | 1 | 44.43 | even | 2 | |||
7744.2.a.bb.1.1 | 1 | 1.1 | even | 1 | trivial | ||
7744.2.a.bb.1.1 | 1 | 11.10 | odd | 2 | CM |