Properties

Label 2-7920-1.1-c1-0-9
Degree $2$
Conductor $7920$
Sign $1$
Analytic cond. $63.2415$
Root an. cond. $7.95245$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 11-s + 2·13-s − 2·17-s − 4·19-s − 4·23-s + 25-s − 6·29-s − 4·35-s − 10·37-s + 6·41-s + 12·43-s − 4·47-s + 9·49-s + 6·53-s − 55-s − 4·59-s + 10·61-s + 2·65-s + 12·67-s − 4·71-s + 10·73-s + 4·77-s − 4·79-s + 4·83-s − 2·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 0.301·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 1.11·29-s − 0.676·35-s − 1.64·37-s + 0.937·41-s + 1.82·43-s − 0.583·47-s + 9/7·49-s + 0.824·53-s − 0.134·55-s − 0.520·59-s + 1.28·61-s + 0.248·65-s + 1.46·67-s − 0.474·71-s + 1.17·73-s + 0.455·77-s − 0.450·79-s + 0.439·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(63.2415\)
Root analytic conductor: \(7.95245\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.198604374\)
\(L(\frac12)\) \(\approx\) \(1.198604374\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78965359455486421637707631628, −7.01299420411563816546019977542, −6.38126558368074953208304890214, −5.92957662563690492395751345040, −5.19993351252464527374411354888, −4.05385861023260388282179375127, −3.61940733835439603523436833531, −2.61424817284399953231027310483, −1.94604140615759817155300036227, −0.51584605831208707950917523839, 0.51584605831208707950917523839, 1.94604140615759817155300036227, 2.61424817284399953231027310483, 3.61940733835439603523436833531, 4.05385861023260388282179375127, 5.19993351252464527374411354888, 5.92957662563690492395751345040, 6.38126558368074953208304890214, 7.01299420411563816546019977542, 7.78965359455486421637707631628

Graph of the $Z$-function along the critical line