Properties

Label 2-82110-1.1-c1-0-41
Degree $2$
Conductor $82110$
Sign $-1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 4·11-s + 12-s − 2·13-s + 14-s − 15-s + 16-s − 17-s + 18-s − 4·19-s − 20-s + 21-s + 4·22-s + 23-s + 24-s + 25-s − 2·26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s + 0.218·21-s + 0.852·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $-1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
23 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30473223918863, −13.72055310260169, −13.36631712559413, −12.69180248802346, −12.20794302019431, −11.93251897630439, −11.30836684300137, −10.85530087163134, −10.29580088098044, −9.678019625160252, −9.153883025341499, −8.436468794689817, −8.360546176934098, −7.352833474834433, −7.181569842367211, −6.506068693792925, −6.038966236719615, −5.262555798211373, −4.611167288465326, −4.230705263945579, −3.771918217522657, −3.032633056279264, −2.506643944441150, −1.736356392964314, −1.182186497088513, 0, 1.182186497088513, 1.736356392964314, 2.506643944441150, 3.032633056279264, 3.771918217522657, 4.230705263945579, 4.611167288465326, 5.262555798211373, 6.038966236719615, 6.506068693792925, 7.181569842367211, 7.352833474834433, 8.360546176934098, 8.436468794689817, 9.153883025341499, 9.678019625160252, 10.29580088098044, 10.85530087163134, 11.30836684300137, 11.93251897630439, 12.20794302019431, 12.69180248802346, 13.36631712559413, 13.72055310260169, 14.30473223918863

Graph of the $Z$-function along the critical line