Properties

Label 4-1234800-1.1-c1e2-0-1
Degree $4$
Conductor $1234800$
Sign $1$
Analytic cond. $78.7319$
Root an. cond. $2.97877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 9-s − 4·11-s + 8·23-s + 25-s + 12·29-s + 20·37-s + 24·43-s + 49-s + 63-s − 24·67-s − 20·71-s − 4·77-s + 81-s − 4·99-s + 8·107-s − 28·109-s + 8·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 8·161-s + ⋯
L(s)  = 1  + 0.377·7-s + 1/3·9-s − 1.20·11-s + 1.66·23-s + 1/5·25-s + 2.22·29-s + 3.28·37-s + 3.65·43-s + 1/7·49-s + 0.125·63-s − 2.93·67-s − 2.37·71-s − 0.455·77-s + 1/9·81-s − 0.402·99-s + 0.773·107-s − 2.68·109-s + 0.752·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.630·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1234800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1234800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1234800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(78.7319\)
Root analytic conductor: \(2.97877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1234800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.478972397\)
\(L(\frac12)\) \(\approx\) \(2.478972397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$ \( 1 - T \)
good11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82067649776875631788978756567, −7.51325888882796800062561076037, −7.46985318735628348223218545659, −6.62104364944396067563104383367, −6.31888690467862628757406619126, −5.67017038367597175775538292471, −5.51088025071477982042675051210, −4.60737339403970738856758018331, −4.51008988119235510509832391491, −4.18636216199252309981165234200, −3.00191084542596222591694033423, −2.80785568081983867387706785012, −2.44981952348987740648309403533, −1.28136430783138726696385588581, −0.798786744184690487080656808366, 0.798786744184690487080656808366, 1.28136430783138726696385588581, 2.44981952348987740648309403533, 2.80785568081983867387706785012, 3.00191084542596222591694033423, 4.18636216199252309981165234200, 4.51008988119235510509832391491, 4.60737339403970738856758018331, 5.51088025071477982042675051210, 5.67017038367597175775538292471, 6.31888690467862628757406619126, 6.62104364944396067563104383367, 7.46985318735628348223218545659, 7.51325888882796800062561076037, 7.82067649776875631788978756567

Graph of the $Z$-function along the critical line