Properties

Label 2.0.7.1-25200.3-c
Base field \(\Q(\sqrt{-7}) \)
Weight $2$
Level norm $25200$
Level \( \left(-120 a + 60\right) \)
Dimension $1$
CM no
Base change yes
Sign $+1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 2\); class number \(1\).

Form

Weight: 2
Level: 25200.3 = \( \left(-120 a + 60\right) \)
Level norm: 25200
Dimension: 1
CM: no
Base change: yes 2940.2.a.g , 420.2.a.b
Newspace:2.0.7.1-25200.3 (dimension 4)
Sign of functional equation: $+1$
Analytic rank: \(0\)
L-ratio: 5

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = \( \left(a\right) \) \( -1 \)
\( 2 \) 2.2 = \( \left(-a + 1\right) \) \( -1 \)
\( 7 \) 7.1 = \( \left(-2 a + 1\right) \) \( -1 \)
\( 9 \) 9.1 = \( \left(3\right) \) \( -1 \)
\( 25 \) 25.1 = \( \left(5\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 11 \) 11.1 = \( \left(-2 a + 3\right) \) \( -2 \)
\( 11 \) 11.2 = \( \left(2 a + 1\right) \) \( -2 \)
\( 23 \) 23.1 = \( \left(-2 a + 5\right) \) \( 4 \)
\( 23 \) 23.2 = \( \left(2 a + 3\right) \) \( 4 \)
\( 29 \) 29.1 = \( \left(-4 a + 1\right) \) \( 6 \)
\( 29 \) 29.2 = \( \left(4 a - 3\right) \) \( 6 \)
\( 37 \) 37.1 = \( \left(-4 a + 5\right) \) \( 10 \)
\( 37 \) 37.2 = \( \left(4 a + 1\right) \) \( 10 \)
\( 43 \) 43.1 = \( \left(-2 a + 7\right) \) \( 12 \)
\( 43 \) 43.2 = \( \left(2 a + 5\right) \) \( 12 \)
\( 53 \) 53.1 = \( \left(-4 a - 3\right) \) \( 0 \)
\( 53 \) 53.2 = \( \left(4 a - 7\right) \) \( 0 \)
\( 67 \) 67.1 = \( \left(-6 a + 1\right) \) \( -12 \)
\( 67 \) 67.2 = \( \left(6 a - 5\right) \) \( -12 \)
\( 71 \) 71.1 = \( \left(-2 a + 9\right) \) \( -10 \)
\( 71 \) 71.2 = \( \left(2 a + 7\right) \) \( -10 \)
\( 79 \) 79.1 = \( \left(-6 a + 7\right) \) \( 0 \)
\( 79 \) 79.2 = \( \left(6 a + 1\right) \) \( 0 \)
\( 107 \) 107.1 = \( \left(-2 a + 11\right) \) \( 4 \)
\( 107 \) 107.2 = \( \left(2 a + 9\right) \) \( 4 \)
Display number of eigenvalues