L(s) = 1 | + 128·2-s − 5.81e3·3-s + 1.63e4·4-s + 7.81e4·5-s − 7.44e5·6-s − 2.56e6·7-s + 2.09e6·8-s + 1.94e7·9-s + 1.00e7·10-s + 1.14e8·11-s − 9.52e7·12-s + 2.84e8·13-s − 3.28e8·14-s − 4.54e8·15-s + 2.68e8·16-s + 7.76e8·17-s + 2.49e9·18-s + 3.74e9·19-s + 1.28e9·20-s + 1.49e10·21-s + 1.46e10·22-s − 2.76e10·23-s − 1.21e10·24-s + 6.10e9·25-s + 3.64e10·26-s − 2.98e10·27-s − 4.19e10·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.53·3-s + 0.5·4-s + 0.447·5-s − 1.08·6-s − 1.17·7-s + 0.353·8-s + 1.35·9-s + 0.316·10-s + 1.77·11-s − 0.767·12-s + 1.25·13-s − 0.831·14-s − 0.686·15-s + 0.250·16-s + 0.459·17-s + 0.960·18-s + 0.959·19-s + 0.223·20-s + 1.80·21-s + 1.25·22-s − 1.69·23-s − 0.542·24-s + 0.200·25-s + 0.888·26-s − 0.549·27-s − 0.588·28-s + ⋯ |
Λ(s)=(=(10s/2ΓC(s)L(s)Λ(16−s)
Λ(s)=(=(10s/2ΓC(s+15/2)L(s)Λ(1−s)
Particular Values
L(8) |
≈ |
1.834104002 |
L(21) |
≈ |
1.834104002 |
L(217) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−128T |
| 5 | 1−7.81e4T |
good | 3 | 1+5.81e3T+1.43e7T2 |
| 7 | 1+2.56e6T+4.74e12T2 |
| 11 | 1−1.14e8T+4.17e15T2 |
| 13 | 1−2.84e8T+5.11e16T2 |
| 17 | 1−7.76e8T+2.86e18T2 |
| 19 | 1−3.74e9T+1.51e19T2 |
| 23 | 1+2.76e10T+2.66e20T2 |
| 29 | 1−1.59e10T+8.62e21T2 |
| 31 | 1−2.79e9T+2.34e22T2 |
| 37 | 1−6.85e11T+3.33e23T2 |
| 41 | 1−9.09e11T+1.55e24T2 |
| 43 | 1+4.11e11T+3.17e24T2 |
| 47 | 1+4.29e11T+1.20e25T2 |
| 53 | 1−1.11e13T+7.31e25T2 |
| 59 | 1+2.98e13T+3.65e26T2 |
| 61 | 1−1.56e13T+6.02e26T2 |
| 67 | 1−6.47e13T+2.46e27T2 |
| 71 | 1−1.38e14T+5.87e27T2 |
| 73 | 1+5.76e13T+8.90e27T2 |
| 79 | 1−1.85e14T+2.91e28T2 |
| 83 | 1+3.07e14T+6.11e28T2 |
| 89 | 1+1.81e14T+1.74e29T2 |
| 97 | 1+1.82e14T+6.33e29T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.77683200436030348164112878375, −16.01719778423616035572737560116, −13.92042686494785765624038293957, −12.43223860759449504643554059912, −11.40073356157614210382640980135, −9.777170891710757936159813134059, −6.51792103893196097256117846195, −5.87007184809743479809345747410, −3.84406424235310651912738150051, −1.05652376614415983558783477407,
1.05652376614415983558783477407, 3.84406424235310651912738150051, 5.87007184809743479809345747410, 6.51792103893196097256117846195, 9.777170891710757936159813134059, 11.40073356157614210382640980135, 12.43223860759449504643554059912, 13.92042686494785765624038293957, 16.01719778423616035572737560116, 16.77683200436030348164112878375