Properties

Label 10.16.a.d
Level $10$
Weight $16$
Character orbit 10.a
Self dual yes
Analytic conductor $14.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,16,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2693505100\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{239569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 59892 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 10\sqrt{239569}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 128 q^{2} + ( - \beta - 922) q^{3} + 16384 q^{4} + 78125 q^{5} + ( - 128 \beta - 118016) q^{6} + ( - 423 \beta - 492466) q^{7} + 2097152 q^{8} + (1844 \beta + 10458077) q^{9} + 10000000 q^{10} + (12006 \beta + 55776072) q^{11}+ \cdots + (228410749230 \beta + 11\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 256 q^{2} - 1844 q^{3} + 32768 q^{4} + 156250 q^{5} - 236032 q^{6} - 984932 q^{7} + 4194304 q^{8} + 20916154 q^{9} + 20000000 q^{10} + 111552144 q^{11} - 30212096 q^{12} + 289313596 q^{13} - 126071296 q^{14}+ \cdots + 22\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
245.229
−244.229
128.000 −5816.58 16384.0 78125.0 −744522. −2.56287e6 2.09715e6 1.94837e7 1.00000e7
1.2 128.000 3972.58 16384.0 78125.0 508490. 1.57794e6 2.09715e6 1.43247e6 1.00000e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.16.a.d 2
3.b odd 2 1 90.16.a.j 2
4.b odd 2 1 80.16.a.f 2
5.b even 2 1 50.16.a.f 2
5.c odd 4 2 50.16.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.16.a.d 2 1.a even 1 1 trivial
50.16.a.f 2 5.b even 2 1
50.16.b.e 4 5.c odd 4 2
80.16.a.f 2 4.b odd 2 1
90.16.a.j 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 1844T_{3} - 23106816 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 128)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1844 T - 23106816 \) Copy content Toggle raw display
$5$ \( (T - 78125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 4044061398944 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 342274048299216 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 50\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 90\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 79\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 71\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 21\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 22\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 15\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 23\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 89\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 56\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 99\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 85\!\cdots\!24 \) Copy content Toggle raw display
show more
show less