Properties

Label 10.16.a.d
Level 1010
Weight 1616
Character orbit 10.a
Self dual yes
Analytic conductor 14.26914.269
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,16,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: N N == 10=25 10 = 2 \cdot 5
Weight: k k == 16 16
Character orbit: [χ][\chi] == 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.269350510014.2693505100
Analytic rank: 00
Dimension: 22
Coefficient field: Q(239569)\Q(\sqrt{239569})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x59892 x^{2} - x - 59892 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 225 2^{2}\cdot 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=10239569\beta = 10\sqrt{239569}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+128q2+(β922)q3+16384q4+78125q5+(128β118016)q6+(423β492466)q7+2097152q8+(1844β+10458077)q9+10000000q10+(12006β+55776072)q11++(228410749230β+11 ⁣ ⁣44)q99+O(q100) q + 128 q^{2} + ( - \beta - 922) q^{3} + 16384 q^{4} + 78125 q^{5} + ( - 128 \beta - 118016) q^{6} + ( - 423 \beta - 492466) q^{7} + 2097152 q^{8} + (1844 \beta + 10458077) q^{9} + 10000000 q^{10} + (12006 \beta + 55776072) q^{11}+ \cdots + (228410749230 \beta + 11\!\cdots\!44) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+256q21844q3+32768q4+156250q5236032q6984932q7+4194304q8+20916154q9+20000000q10+111552144q1130212096q12+289313596q13126071296q14++22 ⁣ ⁣88q99+O(q100) 2 q + 256 q^{2} - 1844 q^{3} + 32768 q^{4} + 156250 q^{5} - 236032 q^{6} - 984932 q^{7} + 4194304 q^{8} + 20916154 q^{9} + 20000000 q^{10} + 111552144 q^{11} - 30212096 q^{12} + 289313596 q^{13} - 126071296 q^{14}+ \cdots + 22\!\cdots\!88 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
245.229
−244.229
128.000 −5816.58 16384.0 78125.0 −744522. −2.56287e6 2.09715e6 1.94837e7 1.00000e7
1.2 128.000 3972.58 16384.0 78125.0 508490. 1.57794e6 2.09715e6 1.43247e6 1.00000e7
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.16.a.d 2
3.b odd 2 1 90.16.a.j 2
4.b odd 2 1 80.16.a.f 2
5.b even 2 1 50.16.a.f 2
5.c odd 4 2 50.16.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.16.a.d 2 1.a even 1 1 trivial
50.16.a.f 2 5.b even 2 1
50.16.b.e 4 5.c odd 4 2
80.16.a.f 2 4.b odd 2 1
90.16.a.j 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+1844T323106816 T_{3}^{2} + 1844T_{3} - 23106816 acting on S16new(Γ0(10))S_{16}^{\mathrm{new}}(\Gamma_0(10)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T128)2 (T - 128)^{2} Copy content Toggle raw display
33 T2+1844T23106816 T^{2} + 1844 T - 23106816 Copy content Toggle raw display
55 (T78125)2 (T - 78125)^{2} Copy content Toggle raw display
77 T2+4044061398944 T^{2} + \cdots - 4044061398944 Copy content Toggle raw display
1111 T2+342274048299216 T^{2} + \cdots - 342274048299216 Copy content Toggle raw display
1313 T2++14 ⁣ ⁣04 T^{2} + \cdots + 14\!\cdots\!04 Copy content Toggle raw display
1717 T2++50 ⁣ ⁣76 T^{2} + \cdots + 50\!\cdots\!76 Copy content Toggle raw display
1919 T2++90 ⁣ ⁣00 T^{2} + \cdots + 90\!\cdots\!00 Copy content Toggle raw display
2323 T2+64 ⁣ ⁣36 T^{2} + \cdots - 64\!\cdots\!36 Copy content Toggle raw display
2929 T2+28 ⁣ ⁣00 T^{2} + \cdots - 28\!\cdots\!00 Copy content Toggle raw display
3131 T2+79 ⁣ ⁣36 T^{2} + \cdots - 79\!\cdots\!36 Copy content Toggle raw display
3737 T2++71 ⁣ ⁣96 T^{2} + \cdots + 71\!\cdots\!96 Copy content Toggle raw display
4141 T2+11 ⁣ ⁣56 T^{2} + \cdots - 11\!\cdots\!56 Copy content Toggle raw display
4343 T2++21 ⁣ ⁣04 T^{2} + \cdots + 21\!\cdots\!04 Copy content Toggle raw display
4747 T2+22 ⁣ ⁣04 T^{2} + \cdots - 22\!\cdots\!04 Copy content Toggle raw display
5353 T2+15 ⁣ ⁣36 T^{2} + \cdots - 15\!\cdots\!36 Copy content Toggle raw display
5959 T2+27 ⁣ ⁣00 T^{2} + \cdots - 27\!\cdots\!00 Copy content Toggle raw display
6161 T2+23 ⁣ ⁣76 T^{2} + \cdots - 23\!\cdots\!76 Copy content Toggle raw display
6767 T2++14 ⁣ ⁣56 T^{2} + \cdots + 14\!\cdots\!56 Copy content Toggle raw display
7171 T2+89 ⁣ ⁣76 T^{2} + \cdots - 89\!\cdots\!76 Copy content Toggle raw display
7373 T2+56 ⁣ ⁣56 T^{2} + \cdots - 56\!\cdots\!56 Copy content Toggle raw display
7979 T2++43 ⁣ ⁣00 T^{2} + \cdots + 43\!\cdots\!00 Copy content Toggle raw display
8383 T2++12 ⁣ ⁣24 T^{2} + \cdots + 12\!\cdots\!24 Copy content Toggle raw display
8989 T2+99 ⁣ ⁣00 T^{2} + \cdots - 99\!\cdots\!00 Copy content Toggle raw display
9797 T2+85 ⁣ ⁣24 T^{2} + \cdots - 85\!\cdots\!24 Copy content Toggle raw display
show more
show less