L(s) = 1 | + (−0.493 + 1.32i)2-s + 1.83i·3-s + (−1.51 − 1.30i)4-s + (−2.43 − 0.906i)6-s + 1.31·7-s + (2.48 − 1.35i)8-s − 0.368·9-s − 6.60i·11-s + (2.40 − 2.77i)12-s + 2.96i·13-s + (−0.649 + 1.74i)14-s + (0.574 + 3.95i)16-s + 2.69·17-s + (0.181 − 0.487i)18-s + 4.97i·19-s + ⋯ |
L(s) = 1 | + (−0.349 + 0.937i)2-s + 1.05i·3-s + (−0.756 − 0.654i)4-s + (−0.992 − 0.369i)6-s + 0.497·7-s + (0.877 − 0.480i)8-s − 0.122·9-s − 1.99i·11-s + (0.693 − 0.801i)12-s + 0.822i·13-s + (−0.173 + 0.465i)14-s + (0.143 + 0.989i)16-s + 0.653·17-s + (0.0428 − 0.115i)18-s + 1.14i·19-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(−0.480−0.877i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(−0.480−0.877i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
−0.480−0.877i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(501,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), −0.480−0.877i)
|
Particular Values
L(1) |
≈ |
0.705323+1.19017i |
L(21) |
≈ |
0.705323+1.19017i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.493−1.32i)T |
| 5 | 1 |
good | 3 | 1−1.83iT−3T2 |
| 7 | 1−1.31T+7T2 |
| 11 | 1+6.60iT−11T2 |
| 13 | 1−2.96iT−13T2 |
| 17 | 1−2.69T+17T2 |
| 19 | 1−4.97iT−19T2 |
| 23 | 1−3.73T+23T2 |
| 29 | 1−5.52iT−29T2 |
| 31 | 1−8.36T+31T2 |
| 37 | 1+7.19iT−37T2 |
| 41 | 1+3.77T+41T2 |
| 43 | 1−3.07iT−43T2 |
| 47 | 1−8.77T+47T2 |
| 53 | 1+0.0464iT−53T2 |
| 59 | 1+1.02iT−59T2 |
| 61 | 1+5.23iT−61T2 |
| 67 | 1−10.8iT−67T2 |
| 71 | 1−9.35T+71T2 |
| 73 | 1+12.4T+73T2 |
| 79 | 1−1.43T+79T2 |
| 83 | 1−13.0iT−83T2 |
| 89 | 1−3.94T+89T2 |
| 97 | 1+1.00T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14324898119898556060600627932, −9.255130801322501229620149797990, −8.622478478863164538978721791775, −7.949933300171837058325147437683, −6.84343555896184440652310384651, −5.85489592940129073995158644527, −5.19540873253243356950715387351, −4.20918072918494792083683624615, −3.35725149956471953933720222072, −1.18830655386051693582383408751,
0.926473497978455344332329221674, 1.97533306534597165650988403871, 2.85932545375616187684892847839, 4.40873630239642598115040954888, 5.03267080122665256444714300666, 6.59483956597848944104481779477, 7.49023506503109278447462851038, 7.87929522339623236113312113785, 8.917273860921809490417133716083, 9.953572475115529677295268125314