L(s) = 1 | + (−0.493 + 1.32i)2-s + 1.83i·3-s + (−1.51 − 1.30i)4-s + (−2.43 − 0.906i)6-s + 1.31·7-s + (2.48 − 1.35i)8-s − 0.368·9-s − 6.60i·11-s + (2.40 − 2.77i)12-s + 2.96i·13-s + (−0.649 + 1.74i)14-s + (0.574 + 3.95i)16-s + 2.69·17-s + (0.181 − 0.487i)18-s + 4.97i·19-s + ⋯ |
L(s) = 1 | + (−0.349 + 0.937i)2-s + 1.05i·3-s + (−0.756 − 0.654i)4-s + (−0.992 − 0.369i)6-s + 0.497·7-s + (0.877 − 0.480i)8-s − 0.122·9-s − 1.99i·11-s + (0.693 − 0.801i)12-s + 0.822i·13-s + (−0.173 + 0.465i)14-s + (0.143 + 0.989i)16-s + 0.653·17-s + (0.0428 − 0.115i)18-s + 1.14i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.480 - 0.877i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.480 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.705323 + 1.19017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.705323 + 1.19017i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.493 - 1.32i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 1.83iT - 3T^{2} \) |
| 7 | \( 1 - 1.31T + 7T^{2} \) |
| 11 | \( 1 + 6.60iT - 11T^{2} \) |
| 13 | \( 1 - 2.96iT - 13T^{2} \) |
| 17 | \( 1 - 2.69T + 17T^{2} \) |
| 19 | \( 1 - 4.97iT - 19T^{2} \) |
| 23 | \( 1 - 3.73T + 23T^{2} \) |
| 29 | \( 1 - 5.52iT - 29T^{2} \) |
| 31 | \( 1 - 8.36T + 31T^{2} \) |
| 37 | \( 1 + 7.19iT - 37T^{2} \) |
| 41 | \( 1 + 3.77T + 41T^{2} \) |
| 43 | \( 1 - 3.07iT - 43T^{2} \) |
| 47 | \( 1 - 8.77T + 47T^{2} \) |
| 53 | \( 1 + 0.0464iT - 53T^{2} \) |
| 59 | \( 1 + 1.02iT - 59T^{2} \) |
| 61 | \( 1 + 5.23iT - 61T^{2} \) |
| 67 | \( 1 - 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 9.35T + 71T^{2} \) |
| 73 | \( 1 + 12.4T + 73T^{2} \) |
| 79 | \( 1 - 1.43T + 79T^{2} \) |
| 83 | \( 1 - 13.0iT - 83T^{2} \) |
| 89 | \( 1 - 3.94T + 89T^{2} \) |
| 97 | \( 1 + 1.00T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14324898119898556060600627932, −9.255130801322501229620149797990, −8.622478478863164538978721791775, −7.949933300171837058325147437683, −6.84343555896184440652310384651, −5.85489592940129073995158644527, −5.19540873253243356950715387351, −4.20918072918494792083683624615, −3.35725149956471953933720222072, −1.18830655386051693582383408751,
0.926473497978455344332329221674, 1.97533306534597165650988403871, 2.85932545375616187684892847839, 4.40873630239642598115040954888, 5.03267080122665256444714300666, 6.59483956597848944104481779477, 7.49023506503109278447462851038, 7.87929522339623236113312113785, 8.917273860921809490417133716083, 9.953572475115529677295268125314