Properties

Label 1000.2.d.c.501.18
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.18
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.493756 + 1.32522i) q^{2} +1.83526i q^{3} +(-1.51241 - 1.30867i) q^{4} +(-2.43212 - 0.906170i) q^{6} +1.31564 q^{7} +(2.48104 - 1.35811i) q^{8} -0.368171 q^{9} +O(q^{10})\) \(q+(-0.493756 + 1.32522i) q^{2} +1.83526i q^{3} +(-1.51241 - 1.30867i) q^{4} +(-2.43212 - 0.906170i) q^{6} +1.31564 q^{7} +(2.48104 - 1.35811i) q^{8} -0.368171 q^{9} -6.60274i q^{11} +(2.40175 - 2.77566i) q^{12} +2.96705i q^{13} +(-0.649606 + 1.74351i) q^{14} +(0.574768 + 3.95849i) q^{16} +2.69502 q^{17} +(0.181787 - 0.487907i) q^{18} +4.97013i q^{19} +2.41454i q^{21} +(8.75007 + 3.26014i) q^{22} +3.73739 q^{23} +(2.49248 + 4.55334i) q^{24} +(-3.93199 - 1.46500i) q^{26} +4.83008i q^{27} +(-1.98979 - 1.72174i) q^{28} +5.52846i q^{29} +8.36121 q^{31} +(-5.52966 - 1.19283i) q^{32} +12.1177 q^{33} +(-1.33068 + 3.57149i) q^{34} +(0.556826 + 0.481814i) q^{36} -7.19517i q^{37} +(-6.58651 - 2.45403i) q^{38} -5.44530 q^{39} -3.77169 q^{41} +(-3.19980 - 1.19220i) q^{42} +3.07951i q^{43} +(-8.64080 + 9.98605i) q^{44} +(-1.84536 + 4.95287i) q^{46} +8.77645 q^{47} +(-7.26485 + 1.05485i) q^{48} -5.26908 q^{49} +4.94606i q^{51} +(3.88289 - 4.48739i) q^{52} -0.0464228i q^{53} +(-6.40092 - 2.38488i) q^{54} +(3.26416 - 1.78679i) q^{56} -9.12147 q^{57} +(-7.32642 - 2.72971i) q^{58} -1.02084i q^{59} -5.23191i q^{61} +(-4.12840 + 11.0804i) q^{62} -0.484382 q^{63} +(4.31107 - 6.73904i) q^{64} +(-5.98320 + 16.0586i) q^{66} +10.8187i q^{67} +(-4.07598 - 3.52689i) q^{68} +6.85908i q^{69} +9.35643 q^{71} +(-0.913446 + 0.500017i) q^{72} -12.4143 q^{73} +(9.53518 + 3.55266i) q^{74} +(6.50426 - 7.51688i) q^{76} -8.68684i q^{77} +(2.68865 - 7.21621i) q^{78} +1.43842 q^{79} -9.96896 q^{81} +(1.86230 - 4.99832i) q^{82} +13.0280i q^{83} +(3.15984 - 3.65178i) q^{84} +(-4.08102 - 1.52053i) q^{86} -10.1462 q^{87} +(-8.96725 - 16.3816i) q^{88} +3.94185 q^{89} +3.90357i q^{91} +(-5.65247 - 4.89101i) q^{92} +15.3450i q^{93} +(-4.33343 + 11.6307i) q^{94} +(2.18916 - 10.1484i) q^{96} -1.00691 q^{97} +(2.60164 - 6.98269i) q^{98} +2.43094i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64} + 42 q^{66} + 96 q^{71} + 6 q^{74} - 2 q^{76} + 96 q^{79} - 56 q^{81} + 116 q^{84} + 46 q^{86} - 44 q^{89} - 14 q^{94} + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.493756 + 1.32522i −0.349138 + 0.937071i
\(3\) 1.83526i 1.05959i 0.848127 + 0.529793i \(0.177730\pi\)
−0.848127 + 0.529793i \(0.822270\pi\)
\(4\) −1.51241 1.30867i −0.756205 0.654335i
\(5\) 0 0
\(6\) −2.43212 0.906170i −0.992908 0.369942i
\(7\) 1.31564 0.497266 0.248633 0.968598i \(-0.420019\pi\)
0.248633 + 0.968598i \(0.420019\pi\)
\(8\) 2.48104 1.35811i 0.877178 0.480165i
\(9\) −0.368171 −0.122724
\(10\) 0 0
\(11\) 6.60274i 1.99080i −0.0958055 0.995400i \(-0.530543\pi\)
0.0958055 0.995400i \(-0.469457\pi\)
\(12\) 2.40175 2.77566i 0.693324 0.801265i
\(13\) 2.96705i 0.822911i 0.911430 + 0.411456i \(0.134979\pi\)
−0.911430 + 0.411456i \(0.865021\pi\)
\(14\) −0.649606 + 1.74351i −0.173615 + 0.465974i
\(15\) 0 0
\(16\) 0.574768 + 3.95849i 0.143692 + 0.989622i
\(17\) 2.69502 0.653639 0.326819 0.945087i \(-0.394023\pi\)
0.326819 + 0.945087i \(0.394023\pi\)
\(18\) 0.181787 0.487907i 0.0428475 0.115001i
\(19\) 4.97013i 1.14023i 0.821566 + 0.570113i \(0.193101\pi\)
−0.821566 + 0.570113i \(0.806899\pi\)
\(20\) 0 0
\(21\) 2.41454i 0.526897i
\(22\) 8.75007 + 3.26014i 1.86552 + 0.695064i
\(23\) 3.73739 0.779301 0.389650 0.920963i \(-0.372596\pi\)
0.389650 + 0.920963i \(0.372596\pi\)
\(24\) 2.49248 + 4.55334i 0.508776 + 0.929446i
\(25\) 0 0
\(26\) −3.93199 1.46500i −0.771126 0.287310i
\(27\) 4.83008i 0.929550i
\(28\) −1.98979 1.72174i −0.376035 0.325379i
\(29\) 5.52846i 1.02661i 0.858206 + 0.513305i \(0.171579\pi\)
−0.858206 + 0.513305i \(0.828421\pi\)
\(30\) 0 0
\(31\) 8.36121 1.50172 0.750859 0.660462i \(-0.229640\pi\)
0.750859 + 0.660462i \(0.229640\pi\)
\(32\) −5.52966 1.19283i −0.977515 0.210865i
\(33\) 12.1177 2.10943
\(34\) −1.33068 + 3.57149i −0.228210 + 0.612506i
\(35\) 0 0
\(36\) 0.556826 + 0.481814i 0.0928043 + 0.0803024i
\(37\) 7.19517i 1.18288i −0.806349 0.591439i \(-0.798560\pi\)
0.806349 0.591439i \(-0.201440\pi\)
\(38\) −6.58651 2.45403i −1.06847 0.398097i
\(39\) −5.44530 −0.871945
\(40\) 0 0
\(41\) −3.77169 −0.589040 −0.294520 0.955645i \(-0.595160\pi\)
−0.294520 + 0.955645i \(0.595160\pi\)
\(42\) −3.19980 1.19220i −0.493740 0.183960i
\(43\) 3.07951i 0.469621i 0.972041 + 0.234810i \(0.0754469\pi\)
−0.972041 + 0.234810i \(0.924553\pi\)
\(44\) −8.64080 + 9.98605i −1.30265 + 1.50545i
\(45\) 0 0
\(46\) −1.84536 + 4.95287i −0.272084 + 0.730260i
\(47\) 8.77645 1.28018 0.640088 0.768301i \(-0.278898\pi\)
0.640088 + 0.768301i \(0.278898\pi\)
\(48\) −7.26485 + 1.05485i −1.04859 + 0.152254i
\(49\) −5.26908 −0.752726
\(50\) 0 0
\(51\) 4.94606i 0.692587i
\(52\) 3.88289 4.48739i 0.538459 0.622289i
\(53\) 0.0464228i 0.00637666i −0.999995 0.00318833i \(-0.998985\pi\)
0.999995 0.00318833i \(-0.00101488\pi\)
\(54\) −6.40092 2.38488i −0.871055 0.324541i
\(55\) 0 0
\(56\) 3.26416 1.78679i 0.436191 0.238770i
\(57\) −9.12147 −1.20817
\(58\) −7.32642 2.72971i −0.962006 0.358429i
\(59\) 1.02084i 0.132902i −0.997790 0.0664510i \(-0.978832\pi\)
0.997790 0.0664510i \(-0.0211676\pi\)
\(60\) 0 0
\(61\) 5.23191i 0.669877i −0.942240 0.334938i \(-0.891284\pi\)
0.942240 0.334938i \(-0.108716\pi\)
\(62\) −4.12840 + 11.0804i −0.524307 + 1.40722i
\(63\) −0.484382 −0.0610264
\(64\) 4.31107 6.73904i 0.538884 0.842380i
\(65\) 0 0
\(66\) −5.98320 + 16.0586i −0.736481 + 1.97668i
\(67\) 10.8187i 1.32172i 0.750511 + 0.660858i \(0.229807\pi\)
−0.750511 + 0.660858i \(0.770193\pi\)
\(68\) −4.07598 3.52689i −0.494285 0.427699i
\(69\) 6.85908i 0.825737i
\(70\) 0 0
\(71\) 9.35643 1.11040 0.555202 0.831715i \(-0.312641\pi\)
0.555202 + 0.831715i \(0.312641\pi\)
\(72\) −0.913446 + 0.500017i −0.107651 + 0.0589276i
\(73\) −12.4143 −1.45298 −0.726490 0.687177i \(-0.758850\pi\)
−0.726490 + 0.687177i \(0.758850\pi\)
\(74\) 9.53518 + 3.55266i 1.10844 + 0.412988i
\(75\) 0 0
\(76\) 6.50426 7.51688i 0.746090 0.862245i
\(77\) 8.68684i 0.989958i
\(78\) 2.68865 7.21621i 0.304429 0.817075i
\(79\) 1.43842 0.161835 0.0809174 0.996721i \(-0.474215\pi\)
0.0809174 + 0.996721i \(0.474215\pi\)
\(80\) 0 0
\(81\) −9.96896 −1.10766
\(82\) 1.86230 4.99832i 0.205656 0.551972i
\(83\) 13.0280i 1.43001i 0.699120 + 0.715005i \(0.253575\pi\)
−0.699120 + 0.715005i \(0.746425\pi\)
\(84\) 3.15984 3.65178i 0.344767 0.398442i
\(85\) 0 0
\(86\) −4.08102 1.52053i −0.440068 0.163962i
\(87\) −10.1462 −1.08778
\(88\) −8.96725 16.3816i −0.955912 1.74629i
\(89\) 3.94185 0.417835 0.208917 0.977933i \(-0.433006\pi\)
0.208917 + 0.977933i \(0.433006\pi\)
\(90\) 0 0
\(91\) 3.90357i 0.409206i
\(92\) −5.65247 4.89101i −0.589311 0.509924i
\(93\) 15.3450i 1.59120i
\(94\) −4.33343 + 11.6307i −0.446959 + 1.19962i
\(95\) 0 0
\(96\) 2.18916 10.1484i 0.223430 1.03576i
\(97\) −1.00691 −0.102236 −0.0511181 0.998693i \(-0.516278\pi\)
−0.0511181 + 0.998693i \(0.516278\pi\)
\(98\) 2.60164 6.98269i 0.262806 0.705358i
\(99\) 2.43094i 0.244318i
\(100\) 0 0
\(101\) 2.50175i 0.248933i 0.992224 + 0.124466i \(0.0397219\pi\)
−0.992224 + 0.124466i \(0.960278\pi\)
\(102\) −6.55461 2.44215i −0.649003 0.241809i
\(103\) 5.34336 0.526497 0.263248 0.964728i \(-0.415206\pi\)
0.263248 + 0.964728i \(0.415206\pi\)
\(104\) 4.02958 + 7.36135i 0.395133 + 0.721840i
\(105\) 0 0
\(106\) 0.0615203 + 0.0229215i 0.00597538 + 0.00222633i
\(107\) 0.971619i 0.0939299i 0.998897 + 0.0469650i \(0.0149549\pi\)
−0.998897 + 0.0469650i \(0.985045\pi\)
\(108\) 6.32098 7.30507i 0.608237 0.702930i
\(109\) 18.8454i 1.80506i −0.430626 0.902531i \(-0.641707\pi\)
0.430626 0.902531i \(-0.358293\pi\)
\(110\) 0 0
\(111\) 13.2050 1.25336
\(112\) 0.756189 + 5.20796i 0.0714532 + 0.492106i
\(113\) 12.3812 1.16472 0.582361 0.812930i \(-0.302129\pi\)
0.582361 + 0.812930i \(0.302129\pi\)
\(114\) 4.50378 12.0879i 0.421818 1.13214i
\(115\) 0 0
\(116\) 7.23493 8.36130i 0.671746 0.776327i
\(117\) 1.09238i 0.100991i
\(118\) 1.35284 + 0.504045i 0.124539 + 0.0464011i
\(119\) 3.54568 0.325032
\(120\) 0 0
\(121\) −32.5961 −2.96329
\(122\) 6.93342 + 2.58328i 0.627722 + 0.233880i
\(123\) 6.92203i 0.624139i
\(124\) −12.6456 10.9421i −1.13561 0.982627i
\(125\) 0 0
\(126\) 0.239166 0.641912i 0.0213066 0.0571860i
\(127\) −11.8083 −1.04782 −0.523909 0.851774i \(-0.675527\pi\)
−0.523909 + 0.851774i \(0.675527\pi\)
\(128\) 6.80209 + 9.04055i 0.601225 + 0.799080i
\(129\) −5.65169 −0.497604
\(130\) 0 0
\(131\) 12.6735i 1.10729i −0.832752 0.553646i \(-0.813236\pi\)
0.832752 0.553646i \(-0.186764\pi\)
\(132\) −18.3270 15.8581i −1.59516 1.38027i
\(133\) 6.53892i 0.566996i
\(134\) −14.3372 5.34180i −1.23854 0.461461i
\(135\) 0 0
\(136\) 6.68644 3.66014i 0.573358 0.313854i
\(137\) −4.33562 −0.370417 −0.185209 0.982699i \(-0.559296\pi\)
−0.185209 + 0.982699i \(0.559296\pi\)
\(138\) −9.08979 3.38671i −0.773774 0.288296i
\(139\) 3.48791i 0.295841i 0.988999 + 0.147920i \(0.0472579\pi\)
−0.988999 + 0.147920i \(0.952742\pi\)
\(140\) 0 0
\(141\) 16.1070i 1.35646i
\(142\) −4.61980 + 12.3993i −0.387685 + 1.04053i
\(143\) 19.5906 1.63825
\(144\) −0.211613 1.45740i −0.0176344 0.121450i
\(145\) 0 0
\(146\) 6.12962 16.4516i 0.507291 1.36155i
\(147\) 9.67013i 0.797579i
\(148\) −9.41610 + 10.8820i −0.773999 + 0.894499i
\(149\) 9.11838i 0.747007i 0.927629 + 0.373503i \(0.121844\pi\)
−0.927629 + 0.373503i \(0.878156\pi\)
\(150\) 0 0
\(151\) −10.5180 −0.855944 −0.427972 0.903792i \(-0.640772\pi\)
−0.427972 + 0.903792i \(0.640772\pi\)
\(152\) 6.74999 + 12.3311i 0.547496 + 1.00018i
\(153\) −0.992229 −0.0802170
\(154\) 11.5120 + 4.28918i 0.927661 + 0.345632i
\(155\) 0 0
\(156\) 8.23552 + 7.12610i 0.659370 + 0.570544i
\(157\) 5.59017i 0.446144i 0.974802 + 0.223072i \(0.0716085\pi\)
−0.974802 + 0.223072i \(0.928392\pi\)
\(158\) −0.710228 + 1.90622i −0.0565027 + 0.151651i
\(159\) 0.0851977 0.00675662
\(160\) 0 0
\(161\) 4.91708 0.387520
\(162\) 4.92224 13.2111i 0.386727 1.03796i
\(163\) 5.48367i 0.429514i 0.976667 + 0.214757i \(0.0688960\pi\)
−0.976667 + 0.214757i \(0.931104\pi\)
\(164\) 5.70435 + 4.93590i 0.445435 + 0.385429i
\(165\) 0 0
\(166\) −17.2650 6.43266i −1.34002 0.499271i
\(167\) 19.4503 1.50511 0.752556 0.658528i \(-0.228821\pi\)
0.752556 + 0.658528i \(0.228821\pi\)
\(168\) 3.27922 + 5.99057i 0.252997 + 0.462182i
\(169\) 4.19663 0.322817
\(170\) 0 0
\(171\) 1.82986i 0.139933i
\(172\) 4.03006 4.65748i 0.307289 0.355129i
\(173\) 11.9677i 0.909885i −0.890521 0.454942i \(-0.849660\pi\)
0.890521 0.454942i \(-0.150340\pi\)
\(174\) 5.00972 13.4459i 0.379786 1.01933i
\(175\) 0 0
\(176\) 26.1369 3.79504i 1.97014 0.286062i
\(177\) 1.87350 0.140821
\(178\) −1.94631 + 5.22381i −0.145882 + 0.391541i
\(179\) 11.0142i 0.823244i −0.911355 0.411622i \(-0.864962\pi\)
0.911355 0.411622i \(-0.135038\pi\)
\(180\) 0 0
\(181\) 18.6306i 1.38480i 0.721511 + 0.692402i \(0.243448\pi\)
−0.721511 + 0.692402i \(0.756552\pi\)
\(182\) −5.17309 1.92741i −0.383455 0.142869i
\(183\) 9.60190 0.709793
\(184\) 9.27261 5.07580i 0.683586 0.374193i
\(185\) 0 0
\(186\) −20.3355 7.57668i −1.49107 0.555549i
\(187\) 17.7945i 1.30126i
\(188\) −13.2736 11.4855i −0.968076 0.837664i
\(189\) 6.35466i 0.462234i
\(190\) 0 0
\(191\) 10.6266 0.768912 0.384456 0.923143i \(-0.374389\pi\)
0.384456 + 0.923143i \(0.374389\pi\)
\(192\) 12.3679 + 7.91192i 0.892575 + 0.570994i
\(193\) 17.9777 1.29406 0.647031 0.762464i \(-0.276011\pi\)
0.647031 + 0.762464i \(0.276011\pi\)
\(194\) 0.497168 1.33438i 0.0356945 0.0958026i
\(195\) 0 0
\(196\) 7.96902 + 6.89549i 0.569215 + 0.492535i
\(197\) 23.6813i 1.68722i 0.536956 + 0.843610i \(0.319574\pi\)
−0.536956 + 0.843610i \(0.680426\pi\)
\(198\) −3.22152 1.20029i −0.228944 0.0853009i
\(199\) 17.9303 1.27104 0.635522 0.772082i \(-0.280785\pi\)
0.635522 + 0.772082i \(0.280785\pi\)
\(200\) 0 0
\(201\) −19.8551 −1.40047
\(202\) −3.31536 1.23525i −0.233268 0.0869120i
\(203\) 7.27348i 0.510498i
\(204\) 6.47276 7.48047i 0.453184 0.523738i
\(205\) 0 0
\(206\) −2.63831 + 7.08112i −0.183820 + 0.493365i
\(207\) −1.37600 −0.0956387
\(208\) −11.7450 + 1.70536i −0.814371 + 0.118246i
\(209\) 32.8165 2.26996
\(210\) 0 0
\(211\) 15.0943i 1.03913i −0.854430 0.519566i \(-0.826094\pi\)
0.854430 0.519566i \(-0.173906\pi\)
\(212\) −0.0607521 + 0.0702103i −0.00417247 + 0.00482206i
\(213\) 17.1715i 1.17657i
\(214\) −1.28761 0.479743i −0.0880190 0.0327945i
\(215\) 0 0
\(216\) 6.55979 + 11.9836i 0.446337 + 0.815381i
\(217\) 11.0004 0.746754
\(218\) 24.9743 + 9.30503i 1.69147 + 0.630216i
\(219\) 22.7834i 1.53956i
\(220\) 0 0
\(221\) 7.99626i 0.537886i
\(222\) −6.52005 + 17.4995i −0.437597 + 1.17449i
\(223\) −21.0583 −1.41017 −0.705083 0.709125i \(-0.749090\pi\)
−0.705083 + 0.709125i \(0.749090\pi\)
\(224\) −7.27506 1.56934i −0.486085 0.104856i
\(225\) 0 0
\(226\) −6.11327 + 16.4077i −0.406649 + 1.09143i
\(227\) 6.94442i 0.460917i 0.973082 + 0.230459i \(0.0740226\pi\)
−0.973082 + 0.230459i \(0.925977\pi\)
\(228\) 13.7954 + 11.9370i 0.913623 + 0.790547i
\(229\) 19.8805i 1.31374i −0.754003 0.656871i \(-0.771879\pi\)
0.754003 0.656871i \(-0.228121\pi\)
\(230\) 0 0
\(231\) 15.9426 1.04895
\(232\) 7.50826 + 13.7163i 0.492942 + 0.900520i
\(233\) −9.43816 −0.618315 −0.309157 0.951011i \(-0.600047\pi\)
−0.309157 + 0.951011i \(0.600047\pi\)
\(234\) 1.44764 + 0.539370i 0.0946355 + 0.0352597i
\(235\) 0 0
\(236\) −1.33594 + 1.54393i −0.0869624 + 0.100501i
\(237\) 2.63987i 0.171478i
\(238\) −1.75070 + 4.69881i −0.113481 + 0.304579i
\(239\) −21.3865 −1.38338 −0.691688 0.722197i \(-0.743132\pi\)
−0.691688 + 0.722197i \(0.743132\pi\)
\(240\) 0 0
\(241\) 11.4117 0.735094 0.367547 0.930005i \(-0.380198\pi\)
0.367547 + 0.930005i \(0.380198\pi\)
\(242\) 16.0945 43.1970i 1.03460 2.77681i
\(243\) 3.80536i 0.244114i
\(244\) −6.84684 + 7.91279i −0.438324 + 0.506564i
\(245\) 0 0
\(246\) 9.17321 + 3.41779i 0.584862 + 0.217911i
\(247\) −14.7466 −0.938305
\(248\) 20.7445 11.3555i 1.31727 0.721072i
\(249\) −23.9097 −1.51522
\(250\) 0 0
\(251\) 2.76130i 0.174292i 0.996196 + 0.0871459i \(0.0277746\pi\)
−0.996196 + 0.0871459i \(0.972225\pi\)
\(252\) 0.732584 + 0.633896i 0.0461484 + 0.0399317i
\(253\) 24.6770i 1.55143i
\(254\) 5.83043 15.6486i 0.365834 0.981881i
\(255\) 0 0
\(256\) −15.3393 + 4.55043i −0.958705 + 0.284402i
\(257\) 12.1685 0.759052 0.379526 0.925181i \(-0.376087\pi\)
0.379526 + 0.925181i \(0.376087\pi\)
\(258\) 2.79056 7.48973i 0.173732 0.466290i
\(259\) 9.46627i 0.588206i
\(260\) 0 0
\(261\) 2.03542i 0.125989i
\(262\) 16.7952 + 6.25763i 1.03761 + 0.386598i
\(263\) −22.4088 −1.38179 −0.690894 0.722956i \(-0.742783\pi\)
−0.690894 + 0.722956i \(0.742783\pi\)
\(264\) 30.0645 16.4572i 1.85034 1.01287i
\(265\) 0 0
\(266\) −8.66550 3.22863i −0.531316 0.197960i
\(267\) 7.23430i 0.442732i
\(268\) 14.1581 16.3623i 0.864844 0.999488i
\(269\) 29.7546i 1.81417i −0.420946 0.907086i \(-0.638302\pi\)
0.420946 0.907086i \(-0.361698\pi\)
\(270\) 0 0
\(271\) 15.1173 0.918308 0.459154 0.888357i \(-0.348153\pi\)
0.459154 + 0.888357i \(0.348153\pi\)
\(272\) 1.54901 + 10.6682i 0.0939227 + 0.646856i
\(273\) −7.16407 −0.433589
\(274\) 2.14074 5.74565i 0.129327 0.347107i
\(275\) 0 0
\(276\) 8.97627 10.3737i 0.540308 0.624426i
\(277\) 9.51304i 0.571583i −0.958292 0.285792i \(-0.907743\pi\)
0.958292 0.285792i \(-0.0922565\pi\)
\(278\) −4.62224 1.72218i −0.277224 0.103289i
\(279\) −3.07836 −0.184296
\(280\) 0 0
\(281\) −17.5890 −1.04927 −0.524637 0.851326i \(-0.675799\pi\)
−0.524637 + 0.851326i \(0.675799\pi\)
\(282\) −21.3454 7.95295i −1.27110 0.473591i
\(283\) 15.3245i 0.910944i −0.890250 0.455472i \(-0.849471\pi\)
0.890250 0.455472i \(-0.150529\pi\)
\(284\) −14.1508 12.2445i −0.839693 0.726576i
\(285\) 0 0
\(286\) −9.67299 + 25.9619i −0.571976 + 1.53516i
\(287\) −4.96220 −0.292909
\(288\) 2.03586 + 0.439167i 0.119964 + 0.0258782i
\(289\) −9.73686 −0.572756
\(290\) 0 0
\(291\) 1.84794i 0.108328i
\(292\) 18.7755 + 16.2462i 1.09875 + 0.950735i
\(293\) 3.18687i 0.186179i −0.995658 0.0930894i \(-0.970326\pi\)
0.995658 0.0930894i \(-0.0296742\pi\)
\(294\) 12.8150 + 4.77468i 0.747388 + 0.278465i
\(295\) 0 0
\(296\) −9.77184 17.8515i −0.567977 1.03760i
\(297\) 31.8918 1.85055
\(298\) −12.0838 4.50225i −0.699999 0.260809i
\(299\) 11.0890i 0.641295i
\(300\) 0 0
\(301\) 4.05153i 0.233526i
\(302\) 5.19334 13.9387i 0.298843 0.802081i
\(303\) −4.59135 −0.263766
\(304\) −19.6742 + 2.85667i −1.12839 + 0.163841i
\(305\) 0 0
\(306\) 0.489919 1.31492i 0.0280068 0.0751690i
\(307\) 28.0569i 1.60129i −0.599138 0.800645i \(-0.704490\pi\)
0.599138 0.800645i \(-0.295510\pi\)
\(308\) −11.3682 + 13.1381i −0.647764 + 0.748611i
\(309\) 9.80644i 0.557869i
\(310\) 0 0
\(311\) 27.7970 1.57622 0.788112 0.615532i \(-0.211059\pi\)
0.788112 + 0.615532i \(0.211059\pi\)
\(312\) −13.5100 + 7.39532i −0.764852 + 0.418677i
\(313\) −21.6443 −1.22341 −0.611703 0.791088i \(-0.709515\pi\)
−0.611703 + 0.791088i \(0.709515\pi\)
\(314\) −7.40819 2.76018i −0.418069 0.155766i
\(315\) 0 0
\(316\) −2.17548 1.88242i −0.122380 0.105894i
\(317\) 16.0032i 0.898827i 0.893324 + 0.449414i \(0.148367\pi\)
−0.893324 + 0.449414i \(0.851633\pi\)
\(318\) −0.0420669 + 0.112906i −0.00235899 + 0.00633143i
\(319\) 36.5030 2.04377
\(320\) 0 0
\(321\) −1.78317 −0.0995269
\(322\) −2.42784 + 6.51620i −0.135298 + 0.363134i
\(323\) 13.3946i 0.745296i
\(324\) 15.0772 + 13.0461i 0.837620 + 0.724782i
\(325\) 0 0
\(326\) −7.26706 2.70759i −0.402485 0.149960i
\(327\) 34.5862 1.91262
\(328\) −9.35771 + 5.12238i −0.516693 + 0.282836i
\(329\) 11.5467 0.636589
\(330\) 0 0
\(331\) 5.39927i 0.296771i 0.988930 + 0.148385i \(0.0474076\pi\)
−0.988930 + 0.148385i \(0.952592\pi\)
\(332\) 17.0494 19.7037i 0.935705 1.08138i
\(333\) 2.64905i 0.145167i
\(334\) −9.60372 + 25.7760i −0.525492 + 1.41040i
\(335\) 0 0
\(336\) −9.55794 + 1.38780i −0.521429 + 0.0757108i
\(337\) −26.3679 −1.43635 −0.718176 0.695861i \(-0.755023\pi\)
−0.718176 + 0.695861i \(0.755023\pi\)
\(338\) −2.07211 + 5.56145i −0.112708 + 0.302503i
\(339\) 22.7226i 1.23412i
\(340\) 0 0
\(341\) 55.2069i 2.98962i
\(342\) 2.42496 + 0.903504i 0.131127 + 0.0488559i
\(343\) −16.1417 −0.871571
\(344\) 4.18231 + 7.64037i 0.225495 + 0.411941i
\(345\) 0 0
\(346\) 15.8598 + 5.90911i 0.852627 + 0.317676i
\(347\) 8.70069i 0.467077i −0.972348 0.233539i \(-0.924969\pi\)
0.972348 0.233539i \(-0.0750306\pi\)
\(348\) 15.3451 + 13.2780i 0.822586 + 0.711773i
\(349\) 14.7757i 0.790923i 0.918483 + 0.395462i \(0.129415\pi\)
−0.918483 + 0.395462i \(0.870585\pi\)
\(350\) 0 0
\(351\) −14.3311 −0.764937
\(352\) −7.87597 + 36.5109i −0.419791 + 1.94604i
\(353\) −17.4259 −0.927485 −0.463743 0.885970i \(-0.653494\pi\)
−0.463743 + 0.885970i \(0.653494\pi\)
\(354\) −0.925053 + 2.48280i −0.0491660 + 0.131959i
\(355\) 0 0
\(356\) −5.96169 5.15857i −0.315969 0.273404i
\(357\) 6.50725i 0.344400i
\(358\) 14.5963 + 5.43835i 0.771438 + 0.287426i
\(359\) −12.3632 −0.652506 −0.326253 0.945282i \(-0.605786\pi\)
−0.326253 + 0.945282i \(0.605786\pi\)
\(360\) 0 0
\(361\) −5.70221 −0.300116
\(362\) −24.6897 9.19899i −1.29766 0.483488i
\(363\) 59.8223i 3.13986i
\(364\) 5.10849 5.90381i 0.267758 0.309443i
\(365\) 0 0
\(366\) −4.74099 + 12.7246i −0.247816 + 0.665126i
\(367\) 4.15969 0.217134 0.108567 0.994089i \(-0.465374\pi\)
0.108567 + 0.994089i \(0.465374\pi\)
\(368\) 2.14814 + 14.7944i 0.111979 + 0.771213i
\(369\) 1.38863 0.0722891
\(370\) 0 0
\(371\) 0.0610758i 0.00317090i
\(372\) 20.0815 23.2079i 1.04118 1.20327i
\(373\) 33.9114i 1.75586i −0.478786 0.877932i \(-0.658923\pi\)
0.478786 0.877932i \(-0.341077\pi\)
\(374\) 23.5816 + 8.78615i 1.21938 + 0.454321i
\(375\) 0 0
\(376\) 21.7747 11.9194i 1.12294 0.614696i
\(377\) −16.4032 −0.844808
\(378\) −8.42132 3.13765i −0.433146 0.161383i
\(379\) 8.17397i 0.419869i 0.977715 + 0.209934i \(0.0673250\pi\)
−0.977715 + 0.209934i \(0.932675\pi\)
\(380\) 0 0
\(381\) 21.6713i 1.11025i
\(382\) −5.24693 + 14.0825i −0.268457 + 0.720525i
\(383\) 3.27290 0.167238 0.0836188 0.996498i \(-0.473352\pi\)
0.0836188 + 0.996498i \(0.473352\pi\)
\(384\) −16.5917 + 12.4836i −0.846694 + 0.637050i
\(385\) 0 0
\(386\) −8.87659 + 23.8244i −0.451806 + 1.21263i
\(387\) 1.13379i 0.0576336i
\(388\) 1.52286 + 1.31771i 0.0773115 + 0.0668967i
\(389\) 2.07560i 0.105237i 0.998615 + 0.0526186i \(0.0167568\pi\)
−0.998615 + 0.0526186i \(0.983243\pi\)
\(390\) 0 0
\(391\) 10.0724 0.509381
\(392\) −13.0728 + 7.15600i −0.660275 + 0.361433i
\(393\) 23.2592 1.17327
\(394\) −31.3829 11.6928i −1.58105 0.589073i
\(395\) 0 0
\(396\) 3.18129 3.67657i 0.159866 0.184755i
\(397\) 6.23114i 0.312732i 0.987699 + 0.156366i \(0.0499779\pi\)
−0.987699 + 0.156366i \(0.950022\pi\)
\(398\) −8.85319 + 23.7616i −0.443770 + 1.19106i
\(399\) −12.0006 −0.600781
\(400\) 0 0
\(401\) 20.9959 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(402\) 9.80358 26.3124i 0.488958 1.31234i
\(403\) 24.8081i 1.23578i
\(404\) 3.27396 3.78366i 0.162885 0.188244i
\(405\) 0 0
\(406\) −9.63895 3.59132i −0.478373 0.178234i
\(407\) −47.5078 −2.35488
\(408\) 6.71730 + 12.2713i 0.332556 + 0.607522i
\(409\) 6.61521 0.327101 0.163551 0.986535i \(-0.447705\pi\)
0.163551 + 0.986535i \(0.447705\pi\)
\(410\) 0 0
\(411\) 7.95698i 0.392489i
\(412\) −8.08135 6.99269i −0.398139 0.344505i
\(413\) 1.34306i 0.0660876i
\(414\) 0.679409 1.82350i 0.0333911 0.0896203i
\(415\) 0 0
\(416\) 3.53920 16.4068i 0.173523 0.804408i
\(417\) −6.40121 −0.313469
\(418\) −16.2033 + 43.4890i −0.792531 + 2.12712i
\(419\) 17.6296i 0.861262i −0.902528 0.430631i \(-0.858291\pi\)
0.902528 0.430631i \(-0.141709\pi\)
\(420\) 0 0
\(421\) 18.0508i 0.879742i 0.898061 + 0.439871i \(0.144976\pi\)
−0.898061 + 0.439871i \(0.855024\pi\)
\(422\) 20.0032 + 7.45289i 0.973741 + 0.362801i
\(423\) −3.23124 −0.157108
\(424\) −0.0630473 0.115177i −0.00306185 0.00559347i
\(425\) 0 0
\(426\) −22.7560 8.47852i −1.10253 0.410785i
\(427\) 6.88332i 0.333107i
\(428\) 1.27153 1.46949i 0.0614616 0.0710303i
\(429\) 35.9539i 1.73587i
\(430\) 0 0
\(431\) 4.44104 0.213917 0.106959 0.994263i \(-0.465889\pi\)
0.106959 + 0.994263i \(0.465889\pi\)
\(432\) −19.1198 + 2.77618i −0.919904 + 0.133569i
\(433\) −24.5345 −1.17905 −0.589526 0.807749i \(-0.700685\pi\)
−0.589526 + 0.807749i \(0.700685\pi\)
\(434\) −5.43150 + 14.5779i −0.260720 + 0.699761i
\(435\) 0 0
\(436\) −24.6624 + 28.5020i −1.18111 + 1.36500i
\(437\) 18.5753i 0.888579i
\(438\) 30.1930 + 11.2494i 1.44268 + 0.537518i
\(439\) −26.1063 −1.24598 −0.622992 0.782228i \(-0.714083\pi\)
−0.622992 + 0.782228i \(0.714083\pi\)
\(440\) 0 0
\(441\) 1.93993 0.0923774
\(442\) −10.5968 3.94820i −0.504038 0.187797i
\(443\) 29.4964i 1.40141i −0.713449 0.700707i \(-0.752868\pi\)
0.713449 0.700707i \(-0.247132\pi\)
\(444\) −19.9714 17.2810i −0.947799 0.820119i
\(445\) 0 0
\(446\) 10.3976 27.9068i 0.492343 1.32143i
\(447\) −16.7346 −0.791518
\(448\) 5.67183 8.86617i 0.267969 0.418887i
\(449\) −18.7321 −0.884021 −0.442010 0.897010i \(-0.645735\pi\)
−0.442010 + 0.897010i \(0.645735\pi\)
\(450\) 0 0
\(451\) 24.9035i 1.17266i
\(452\) −18.7254 16.2028i −0.880768 0.762118i
\(453\) 19.3033i 0.906947i
\(454\) −9.20288 3.42885i −0.431912 0.160924i
\(455\) 0 0
\(456\) −22.6307 + 12.3880i −1.05978 + 0.580120i
\(457\) 0.111216 0.00520245 0.00260123 0.999997i \(-0.499172\pi\)
0.00260123 + 0.999997i \(0.499172\pi\)
\(458\) 26.3461 + 9.81613i 1.23107 + 0.458678i
\(459\) 13.0172i 0.607590i
\(460\) 0 0
\(461\) 3.71668i 0.173103i −0.996247 0.0865516i \(-0.972415\pi\)
0.996247 0.0865516i \(-0.0275847\pi\)
\(462\) −7.87175 + 21.1274i −0.366227 + 0.982937i
\(463\) 11.9601 0.555831 0.277915 0.960606i \(-0.410356\pi\)
0.277915 + 0.960606i \(0.410356\pi\)
\(464\) −21.8844 + 3.17758i −1.01596 + 0.147516i
\(465\) 0 0
\(466\) 4.66015 12.5076i 0.215877 0.579405i
\(467\) 17.1232i 0.792365i 0.918172 + 0.396183i \(0.129665\pi\)
−0.918172 + 0.396183i \(0.870335\pi\)
\(468\) −1.42957 + 1.65213i −0.0660817 + 0.0763697i
\(469\) 14.2336i 0.657244i
\(470\) 0 0
\(471\) −10.2594 −0.472728
\(472\) −1.38641 2.53274i −0.0638148 0.116579i
\(473\) 20.3332 0.934921
\(474\) −3.49841 1.30345i −0.160687 0.0598695i
\(475\) 0 0
\(476\) −5.36253 4.64013i −0.245791 0.212680i
\(477\) 0.0170915i 0.000782567i
\(478\) 10.5597 28.3417i 0.482989 1.29632i
\(479\) 7.70565 0.352080 0.176040 0.984383i \(-0.443671\pi\)
0.176040 + 0.984383i \(0.443671\pi\)
\(480\) 0 0
\(481\) 21.3484 0.973404
\(482\) −5.63461 + 15.1230i −0.256649 + 0.688835i
\(483\) 9.02410i 0.410611i
\(484\) 49.2987 + 42.6576i 2.24085 + 1.93898i
\(485\) 0 0
\(486\) 5.04294 + 1.87892i 0.228752 + 0.0852296i
\(487\) −0.471068 −0.0213461 −0.0106731 0.999943i \(-0.503397\pi\)
−0.0106731 + 0.999943i \(0.503397\pi\)
\(488\) −7.10551 12.9805i −0.321651 0.587601i
\(489\) −10.0639 −0.455107
\(490\) 0 0
\(491\) 42.9128i 1.93663i −0.249735 0.968314i \(-0.580343\pi\)
0.249735 0.968314i \(-0.419657\pi\)
\(492\) −9.05865 + 10.4689i −0.408396 + 0.471977i
\(493\) 14.8993i 0.671032i
\(494\) 7.28123 19.5425i 0.327598 0.879258i
\(495\) 0 0
\(496\) 4.80576 + 33.0978i 0.215785 + 1.48613i
\(497\) 12.3097 0.552167
\(498\) 11.8056 31.6857i 0.529021 1.41987i
\(499\) 20.7158i 0.927365i −0.886001 0.463683i \(-0.846528\pi\)
0.886001 0.463683i \(-0.153472\pi\)
\(500\) 0 0
\(501\) 35.6964i 1.59480i
\(502\) −3.65933 1.36341i −0.163324 0.0608519i
\(503\) 6.72612 0.299903 0.149951 0.988693i \(-0.452088\pi\)
0.149951 + 0.988693i \(0.452088\pi\)
\(504\) −1.20177 + 0.657844i −0.0535310 + 0.0293027i
\(505\) 0 0
\(506\) 32.7025 + 12.1844i 1.45380 + 0.541664i
\(507\) 7.70189i 0.342053i
\(508\) 17.8590 + 15.4532i 0.792366 + 0.685624i
\(509\) 28.6335i 1.26916i −0.772858 0.634579i \(-0.781174\pi\)
0.772858 0.634579i \(-0.218826\pi\)
\(510\) 0 0
\(511\) −16.3327 −0.722518
\(512\) 1.54355 22.5747i 0.0682160 0.997671i
\(513\) −24.0062 −1.05990
\(514\) −6.00828 + 16.1260i −0.265014 + 0.711286i
\(515\) 0 0
\(516\) 8.54767 + 7.39620i 0.376290 + 0.325599i
\(517\) 57.9486i 2.54858i
\(518\) 12.5449 + 4.67403i 0.551191 + 0.205365i
\(519\) 21.9637 0.964102
\(520\) 0 0
\(521\) −23.0885 −1.01152 −0.505762 0.862673i \(-0.668789\pi\)
−0.505762 + 0.862673i \(0.668789\pi\)
\(522\) 2.69738 + 1.00500i 0.118061 + 0.0439877i
\(523\) 11.3256i 0.495236i 0.968858 + 0.247618i \(0.0796478\pi\)
−0.968858 + 0.247618i \(0.920352\pi\)
\(524\) −16.5855 + 19.1676i −0.724539 + 0.837339i
\(525\) 0 0
\(526\) 11.0645 29.6966i 0.482435 1.29483i
\(527\) 22.5337 0.981581
\(528\) 6.96488 + 47.9679i 0.303108 + 2.08753i
\(529\) −9.03188 −0.392690
\(530\) 0 0
\(531\) 0.375844i 0.0163102i
\(532\) 8.55728 9.88952i 0.371005 0.428765i
\(533\) 11.1908i 0.484727i
\(534\) −9.58703 3.57198i −0.414872 0.154575i
\(535\) 0 0
\(536\) 14.6930 + 26.8416i 0.634641 + 1.15938i
\(537\) 20.2140 0.872298
\(538\) 39.4314 + 14.6915i 1.70001 + 0.633397i
\(539\) 34.7904i 1.49853i
\(540\) 0 0
\(541\) 28.1159i 1.20880i 0.796683 + 0.604398i \(0.206586\pi\)
−0.796683 + 0.604398i \(0.793414\pi\)
\(542\) −7.46424 + 20.0337i −0.320616 + 0.860520i
\(543\) −34.1920 −1.46732
\(544\) −14.9026 3.21471i −0.638942 0.137830i
\(545\) 0 0
\(546\) 3.53730 9.49395i 0.151382 0.406304i
\(547\) 25.7268i 1.10000i −0.835166 0.549998i \(-0.814628\pi\)
0.835166 0.549998i \(-0.185372\pi\)
\(548\) 6.55724 + 5.67389i 0.280111 + 0.242377i
\(549\) 1.92624i 0.0822098i
\(550\) 0 0
\(551\) −27.4772 −1.17057
\(552\) 9.31540 + 17.0176i 0.396490 + 0.724318i
\(553\) 1.89245 0.0804750
\(554\) 12.6069 + 4.69712i 0.535614 + 0.199562i
\(555\) 0 0
\(556\) 4.56452 5.27515i 0.193579 0.223716i
\(557\) 11.3682i 0.481685i −0.970564 0.240842i \(-0.922576\pi\)
0.970564 0.240842i \(-0.0774237\pi\)
\(558\) 1.51996 4.07950i 0.0643449 0.172699i
\(559\) −9.13705 −0.386456
\(560\) 0 0
\(561\) 32.6575 1.37880
\(562\) 8.68470 23.3093i 0.366342 0.983245i
\(563\) 6.10463i 0.257279i −0.991691 0.128640i \(-0.958939\pi\)
0.991691 0.128640i \(-0.0410611\pi\)
\(564\) 21.0788 24.3605i 0.887578 1.02576i
\(565\) 0 0
\(566\) 20.3083 + 7.56654i 0.853619 + 0.318045i
\(567\) −13.1156 −0.550803
\(568\) 23.2136 12.7071i 0.974023 0.533177i
\(569\) 20.0788 0.841749 0.420875 0.907119i \(-0.361723\pi\)
0.420875 + 0.907119i \(0.361723\pi\)
\(570\) 0 0
\(571\) 12.1145i 0.506975i 0.967339 + 0.253487i \(0.0815776\pi\)
−0.967339 + 0.253487i \(0.918422\pi\)
\(572\) −29.6291 25.6377i −1.23885 1.07196i
\(573\) 19.5025i 0.814729i
\(574\) 2.45012 6.57600i 0.102266 0.274477i
\(575\) 0 0
\(576\) −1.58721 + 2.48112i −0.0661338 + 0.103380i
\(577\) −37.1530 −1.54670 −0.773351 0.633979i \(-0.781421\pi\)
−0.773351 + 0.633979i \(0.781421\pi\)
\(578\) 4.80763 12.9035i 0.199971 0.536714i
\(579\) 32.9937i 1.37117i
\(580\) 0 0
\(581\) 17.1402i 0.711095i
\(582\) 2.44892 + 0.912431i 0.101511 + 0.0378215i
\(583\) −0.306517 −0.0126946
\(584\) −30.8002 + 16.8599i −1.27452 + 0.697670i
\(585\) 0 0
\(586\) 4.22330 + 1.57353i 0.174463 + 0.0650021i
\(587\) 14.6112i 0.603071i 0.953455 + 0.301535i \(0.0974991\pi\)
−0.953455 + 0.301535i \(0.902501\pi\)
\(588\) −12.6550 + 14.6252i −0.521884 + 0.603133i
\(589\) 41.5563i 1.71230i
\(590\) 0 0
\(591\) −43.4612 −1.78776
\(592\) 28.4820 4.13555i 1.17060 0.169970i
\(593\) −43.9414 −1.80446 −0.902229 0.431257i \(-0.858070\pi\)
−0.902229 + 0.431257i \(0.858070\pi\)
\(594\) −15.7468 + 42.2636i −0.646097 + 1.73410i
\(595\) 0 0
\(596\) 11.9329 13.7907i 0.488792 0.564890i
\(597\) 32.9067i 1.34678i
\(598\) −14.6954 5.47528i −0.600939 0.223901i
\(599\) −19.8918 −0.812756 −0.406378 0.913705i \(-0.633208\pi\)
−0.406378 + 0.913705i \(0.633208\pi\)
\(600\) 0 0
\(601\) −7.20689 −0.293975 −0.146988 0.989138i \(-0.546958\pi\)
−0.146988 + 0.989138i \(0.546958\pi\)
\(602\) −5.36917 2.00047i −0.218831 0.0815330i
\(603\) 3.98314i 0.162206i
\(604\) 15.9076 + 13.7646i 0.647269 + 0.560074i
\(605\) 0 0
\(606\) 2.26701 6.08454i 0.0920908 0.247168i
\(607\) 6.17988 0.250834 0.125417 0.992104i \(-0.459973\pi\)
0.125417 + 0.992104i \(0.459973\pi\)
\(608\) 5.92854 27.4831i 0.240434 1.11459i
\(609\) −13.3487 −0.540917
\(610\) 0 0
\(611\) 26.0401i 1.05347i
\(612\) 1.50066 + 1.29850i 0.0606605 + 0.0524888i
\(613\) 14.3999i 0.581605i 0.956783 + 0.290803i \(0.0939223\pi\)
−0.956783 + 0.290803i \(0.906078\pi\)
\(614\) 37.1815 + 13.8533i 1.50052 + 0.559072i
\(615\) 0 0
\(616\) −11.7977 21.5524i −0.475343 0.868369i
\(617\) −38.5229 −1.55087 −0.775437 0.631425i \(-0.782470\pi\)
−0.775437 + 0.631425i \(0.782470\pi\)
\(618\) −12.9957 4.84199i −0.522763 0.194773i
\(619\) 4.77140i 0.191779i −0.995392 0.0958894i \(-0.969430\pi\)
0.995392 0.0958894i \(-0.0305695\pi\)
\(620\) 0 0
\(621\) 18.0519i 0.724399i
\(622\) −13.7249 + 36.8371i −0.550320 + 1.47703i
\(623\) 5.18606 0.207775
\(624\) −3.12978 21.5552i −0.125292 0.862897i
\(625\) 0 0
\(626\) 10.6870 28.6834i 0.427138 1.14642i
\(627\) 60.2267i 2.40522i
\(628\) 7.31568 8.45462i 0.291927 0.337376i
\(629\) 19.3911i 0.773175i
\(630\) 0 0
\(631\) −16.4566 −0.655127 −0.327563 0.944829i \(-0.606228\pi\)
−0.327563 + 0.944829i \(0.606228\pi\)
\(632\) 3.56877 1.95353i 0.141958 0.0777073i
\(633\) 27.7019 1.10105
\(634\) −21.2077 7.90166i −0.842265 0.313815i
\(635\) 0 0
\(636\) −0.128854 0.111496i −0.00510939 0.00442109i
\(637\) 15.6336i 0.619427i
\(638\) −18.0236 + 48.3744i −0.713560 + 1.91516i
\(639\) −3.44477 −0.136273
\(640\) 0 0
\(641\) 37.6381 1.48662 0.743309 0.668949i \(-0.233255\pi\)
0.743309 + 0.668949i \(0.233255\pi\)
\(642\) 0.880451 2.36309i 0.0347486 0.0932638i
\(643\) 0.647618i 0.0255396i 0.999918 + 0.0127698i \(0.00406486\pi\)
−0.999918 + 0.0127698i \(0.995935\pi\)
\(644\) −7.43663 6.43483i −0.293044 0.253568i
\(645\) 0 0
\(646\) −17.7508 6.61367i −0.698395 0.260211i
\(647\) 40.6274 1.59723 0.798613 0.601845i \(-0.205567\pi\)
0.798613 + 0.601845i \(0.205567\pi\)
\(648\) −24.7333 + 13.5390i −0.971618 + 0.531860i
\(649\) −6.74033 −0.264581
\(650\) 0 0
\(651\) 20.1885i 0.791250i
\(652\) 7.17631 8.29356i 0.281046 0.324801i
\(653\) 21.7949i 0.852900i −0.904511 0.426450i \(-0.859764\pi\)
0.904511 0.426450i \(-0.140236\pi\)
\(654\) −17.0771 + 45.8342i −0.667768 + 1.79226i
\(655\) 0 0
\(656\) −2.16785 14.9302i −0.0846403 0.582927i
\(657\) 4.57057 0.178315
\(658\) −5.70124 + 15.3019i −0.222257 + 0.596529i
\(659\) 10.4657i 0.407684i 0.979004 + 0.203842i \(0.0653429\pi\)
−0.979004 + 0.203842i \(0.934657\pi\)
\(660\) 0 0
\(661\) 23.8297i 0.926870i −0.886131 0.463435i \(-0.846617\pi\)
0.886131 0.463435i \(-0.153383\pi\)
\(662\) −7.15521 2.66592i −0.278095 0.103614i
\(663\) −14.6752 −0.569937
\(664\) 17.6935 + 32.3229i 0.686640 + 1.25437i
\(665\) 0 0
\(666\) −3.51058 1.30799i −0.136032 0.0506835i
\(667\) 20.6620i 0.800037i
\(668\) −29.4169 25.4541i −1.13817 0.984847i
\(669\) 38.6474i 1.49419i
\(670\) 0 0
\(671\) −34.5449 −1.33359
\(672\) 2.88015 13.3516i 0.111104 0.515049i
\(673\) −18.0022 −0.693935 −0.346968 0.937877i \(-0.612789\pi\)
−0.346968 + 0.937877i \(0.612789\pi\)
\(674\) 13.0193 34.9433i 0.501485 1.34596i
\(675\) 0 0
\(676\) −6.34702 5.49200i −0.244116 0.211231i
\(677\) 38.0024i 1.46055i −0.683152 0.730276i \(-0.739391\pi\)
0.683152 0.730276i \(-0.260609\pi\)
\(678\) −30.1124 11.2194i −1.15646 0.430880i
\(679\) −1.32473 −0.0508386
\(680\) 0 0
\(681\) −12.7448 −0.488382
\(682\) 73.1612 + 27.2587i 2.80149 + 1.04379i
\(683\) 44.0579i 1.68583i −0.538046 0.842915i \(-0.680837\pi\)
0.538046 0.842915i \(-0.319163\pi\)
\(684\) −2.39468 + 2.76750i −0.0915629 + 0.105818i
\(685\) 0 0
\(686\) 7.97008 21.3913i 0.304299 0.816725i
\(687\) 36.4859 1.39202
\(688\) −12.1902 + 1.77000i −0.464747 + 0.0674807i
\(689\) 0.137739 0.00524742
\(690\) 0 0
\(691\) 6.13682i 0.233456i 0.993164 + 0.116728i \(0.0372405\pi\)
−0.993164 + 0.116728i \(0.962759\pi\)
\(692\) −15.6617 + 18.1000i −0.595369 + 0.688059i
\(693\) 3.19824i 0.121491i
\(694\) 11.5303 + 4.29602i 0.437685 + 0.163075i
\(695\) 0 0
\(696\) −25.1730 + 13.7796i −0.954178 + 0.522314i
\(697\) −10.1648 −0.385019
\(698\) −19.5810 7.29557i −0.741151 0.276141i
\(699\) 17.3215i 0.655158i
\(700\) 0 0
\(701\) 41.6486i 1.57305i −0.617561 0.786523i \(-0.711879\pi\)
0.617561 0.786523i \(-0.288121\pi\)
\(702\) 7.07606 18.9918i 0.267069 0.716801i
\(703\) 35.7609 1.34875
\(704\) −44.4961 28.4649i −1.67701 1.07281i
\(705\) 0 0
\(706\) 8.60412 23.0931i 0.323821 0.869120i
\(707\) 3.29140i 0.123786i
\(708\) −2.83350 2.45180i −0.106490 0.0921441i
\(709\) 46.6032i 1.75022i 0.483925 + 0.875109i \(0.339211\pi\)
−0.483925 + 0.875109i \(0.660789\pi\)
\(710\) 0 0
\(711\) −0.529584 −0.0198610
\(712\) 9.77986 5.35346i 0.366516 0.200629i
\(713\) 31.2492 1.17029
\(714\) −8.62352 3.21299i −0.322727 0.120243i
\(715\) 0 0
\(716\) −14.4140 + 16.6581i −0.538677 + 0.622541i
\(717\) 39.2497i 1.46581i
\(718\) 6.10442 16.3840i 0.227815 0.611445i
\(719\) −33.3634 −1.24424 −0.622122 0.782920i \(-0.713729\pi\)
−0.622122 + 0.782920i \(0.713729\pi\)
\(720\) 0 0
\(721\) 7.02995 0.261809
\(722\) 2.81550 7.55667i 0.104782 0.281230i
\(723\) 20.9435i 0.778895i
\(724\) 24.3814 28.1772i 0.906126 1.04720i
\(725\) 0 0
\(726\) 79.2777 + 29.5376i 2.94227 + 1.09624i
\(727\) −34.3672 −1.27461 −0.637305 0.770612i \(-0.719951\pi\)
−0.637305 + 0.770612i \(0.719951\pi\)
\(728\) 5.30149 + 9.68491i 0.196486 + 0.358946i
\(729\) −22.9231 −0.849002
\(730\) 0 0
\(731\) 8.29934i 0.306962i
\(732\) −14.5220 12.5657i −0.536749 0.464442i
\(733\) 40.7127i 1.50376i −0.659302 0.751878i \(-0.729148\pi\)
0.659302 0.751878i \(-0.270852\pi\)
\(734\) −2.05387 + 5.51250i −0.0758098 + 0.203470i
\(735\) 0 0
\(736\) −20.6665 4.45809i −0.761778 0.164328i
\(737\) 71.4331 2.63127
\(738\) −0.685644 + 1.84024i −0.0252389 + 0.0677401i
\(739\) 22.9998i 0.846061i −0.906115 0.423030i \(-0.860966\pi\)
0.906115 0.423030i \(-0.139034\pi\)
\(740\) 0 0
\(741\) 27.0638i 0.994215i
\(742\) 0.0809388 + 0.0301565i 0.00297136 + 0.00110708i
\(743\) 14.7518 0.541192 0.270596 0.962693i \(-0.412779\pi\)
0.270596 + 0.962693i \(0.412779\pi\)
\(744\) 20.8402 + 38.0714i 0.764038 + 1.39577i
\(745\) 0 0
\(746\) 44.9400 + 16.7439i 1.64537 + 0.613039i
\(747\) 4.79654i 0.175496i
\(748\) −23.2871 + 26.9126i −0.851462 + 0.984022i
\(749\) 1.27830i 0.0467082i
\(750\) 0 0
\(751\) −19.6790 −0.718099 −0.359049 0.933319i \(-0.616899\pi\)
−0.359049 + 0.933319i \(0.616899\pi\)
\(752\) 5.04442 + 34.7415i 0.183951 + 1.26689i
\(753\) −5.06770 −0.184677
\(754\) 8.09918 21.7378i 0.294955 0.791645i
\(755\) 0 0
\(756\) 8.31616 9.61086i 0.302456 0.349544i
\(757\) 3.22189i 0.117102i −0.998284 0.0585508i \(-0.981352\pi\)
0.998284 0.0585508i \(-0.0186480\pi\)
\(758\) −10.8323 4.03595i −0.393447 0.146592i
\(759\) 45.2887 1.64388
\(760\) 0 0
\(761\) 21.5082 0.779672 0.389836 0.920884i \(-0.372532\pi\)
0.389836 + 0.920884i \(0.372532\pi\)
\(762\) 28.7192 + 10.7003i 1.04039 + 0.387632i
\(763\) 24.7938i 0.897596i
\(764\) −16.0717 13.9067i −0.581455 0.503126i
\(765\) 0 0
\(766\) −1.61602 + 4.33731i −0.0583890 + 0.156713i
\(767\) 3.02888 0.109366
\(768\) −8.35121 28.1515i −0.301348 1.01583i
\(769\) 16.0974 0.580487 0.290243 0.956953i \(-0.406264\pi\)
0.290243 + 0.956953i \(0.406264\pi\)
\(770\) 0 0
\(771\) 22.3324i 0.804281i
\(772\) −27.1896 23.5268i −0.978576 0.846749i
\(773\) 2.13036i 0.0766237i −0.999266 0.0383118i \(-0.987802\pi\)
0.999266 0.0383118i \(-0.0121980\pi\)
\(774\) 1.50251 + 0.559814i 0.0540068 + 0.0201221i
\(775\) 0 0
\(776\) −2.49818 + 1.36749i −0.0896793 + 0.0490902i
\(777\) 17.3731 0.623255
\(778\) −2.75063 1.02484i −0.0986147 0.0367423i
\(779\) 18.7458i 0.671639i
\(780\) 0 0
\(781\) 61.7781i 2.21059i
\(782\) −4.97329 + 13.3481i −0.177844 + 0.477326i
\(783\) −26.7029 −0.954285
\(784\) −3.02850 20.8576i −0.108161 0.744915i
\(785\) 0 0
\(786\) −11.4844 + 30.8235i −0.409634 + 1.09944i
\(787\) 11.4913i 0.409619i 0.978802 + 0.204810i \(0.0656575\pi\)
−0.978802 + 0.204810i \(0.934342\pi\)
\(788\) 30.9910 35.8158i 1.10401 1.27588i
\(789\) 41.1260i 1.46412i
\(790\) 0 0
\(791\) 16.2892 0.579177
\(792\) 3.30148 + 6.03124i 0.117313 + 0.214311i
\(793\) 15.5233 0.551249
\(794\) −8.25762 3.07666i −0.293052 0.109187i
\(795\) 0 0
\(796\) −27.1180 23.4648i −0.961170 0.831689i
\(797\) 14.3363i 0.507818i 0.967228 + 0.253909i \(0.0817164\pi\)
−0.967228 + 0.253909i \(0.918284\pi\)
\(798\) 5.92537 15.9034i 0.209756 0.562975i
\(799\) 23.6527 0.836773
\(800\) 0 0
\(801\) −1.45127 −0.0512782
\(802\) −10.3669 + 27.8242i −0.366066 + 0.982506i
\(803\) 81.9681i 2.89259i
\(804\) 30.0291 + 25.9838i 1.05904 + 0.916377i
\(805\) 0 0
\(806\) −32.8762 12.2492i −1.15801 0.431458i
\(807\) 54.6074 1.92227
\(808\) 3.39765 + 6.20692i 0.119529 + 0.218359i
\(809\) 43.6620 1.53508 0.767538 0.641004i \(-0.221482\pi\)
0.767538 + 0.641004i \(0.221482\pi\)
\(810\) 0 0
\(811\) 18.8353i 0.661396i 0.943737 + 0.330698i \(0.107284\pi\)
−0.943737 + 0.330698i \(0.892716\pi\)
\(812\) 9.51858 11.0005i 0.334037 0.386041i
\(813\) 27.7441i 0.973027i
\(814\) 23.4573 62.9583i 0.822177 2.20669i
\(815\) 0 0
\(816\) −19.5789 + 2.84284i −0.685399 + 0.0995192i
\(817\) −15.3056 −0.535474
\(818\) −3.26630 + 8.76661i −0.114204 + 0.306517i
\(819\) 1.43718i 0.0502193i
\(820\) 0 0
\(821\) 1.64016i 0.0572421i 0.999590 + 0.0286210i \(0.00911160\pi\)
−0.999590 + 0.0286210i \(0.990888\pi\)
\(822\) 10.5447 + 3.92881i 0.367790 + 0.137033i
\(823\) 43.7219 1.52405 0.762024 0.647549i \(-0.224206\pi\)
0.762024 + 0.647549i \(0.224206\pi\)
\(824\) 13.2571 7.25687i 0.461831 0.252805i
\(825\) 0 0
\(826\) 1.77985 + 0.663144i 0.0619288 + 0.0230737i
\(827\) 32.2651i 1.12197i 0.827827 + 0.560983i \(0.189577\pi\)
−0.827827 + 0.560983i \(0.810423\pi\)
\(828\) 2.08108 + 1.80073i 0.0723225 + 0.0625797i
\(829\) 6.83658i 0.237444i 0.992928 + 0.118722i \(0.0378798\pi\)
−0.992928 + 0.118722i \(0.962120\pi\)
\(830\) 0 0
\(831\) 17.4589 0.605642
\(832\) 19.9951 + 12.7912i 0.693204 + 0.443453i
\(833\) −14.2003 −0.492011
\(834\) 3.16064 8.48301i 0.109444 0.293743i
\(835\) 0 0
\(836\) −49.6320 42.9459i −1.71656 1.48532i
\(837\) 40.3854i 1.39592i
\(838\) 23.3631 + 8.70471i 0.807064 + 0.300699i
\(839\) 12.3983 0.428037 0.214018 0.976830i \(-0.431345\pi\)
0.214018 + 0.976830i \(0.431345\pi\)
\(840\) 0 0
\(841\) −1.56388 −0.0539268
\(842\) −23.9212 8.91269i −0.824381 0.307151i
\(843\) 32.2804i 1.11180i
\(844\) −19.7534 + 22.8287i −0.679941 + 0.785797i
\(845\) 0 0
\(846\) 1.59544 4.28209i 0.0548524 0.147221i
\(847\) −42.8849 −1.47354
\(848\) 0.183764 0.0266823i 0.00631048 0.000916275i
\(849\) 28.1243 0.965224
\(850\) 0 0
\(851\) 26.8912i 0.921818i
\(852\) 22.4718 25.9703i 0.769870 0.889728i
\(853\) 10.2780i 0.351911i 0.984398 + 0.175955i \(0.0563015\pi\)
−0.984398 + 0.175955i \(0.943699\pi\)
\(854\) 9.12190 + 3.39868i 0.312145 + 0.116300i
\(855\) 0 0
\(856\) 1.31957 + 2.41062i 0.0451018 + 0.0823933i
\(857\) −11.1493 −0.380852 −0.190426 0.981702i \(-0.560987\pi\)
−0.190426 + 0.981702i \(0.560987\pi\)
\(858\) −47.6467 17.7524i −1.62663 0.606058i
\(859\) 30.3826i 1.03664i −0.855186 0.518321i \(-0.826557\pi\)
0.855186 0.518321i \(-0.173443\pi\)
\(860\) 0 0
\(861\) 9.10692i 0.310363i
\(862\) −2.19279 + 5.88535i −0.0746867 + 0.200456i
\(863\) −46.2899 −1.57573 −0.787863 0.615851i \(-0.788812\pi\)
−0.787863 + 0.615851i \(0.788812\pi\)
\(864\) 5.76149 26.7087i 0.196010 0.908649i
\(865\) 0 0
\(866\) 12.1140 32.5136i 0.411652 1.10486i
\(867\) 17.8696i 0.606885i
\(868\) −16.6371 14.3958i −0.564699 0.488627i
\(869\) 9.49750i 0.322181i
\(870\) 0 0
\(871\) −32.0996 −1.08765
\(872\) −25.5941 46.7561i −0.866727 1.58336i
\(873\) 0.370715 0.0125468
\(874\) −24.6164 9.17169i −0.832662 0.310237i
\(875\) 0 0
\(876\) −29.8159 + 34.4578i −1.00739 + 1.16422i
\(877\) 39.8781i 1.34659i −0.739376 0.673293i \(-0.764879\pi\)
0.739376 0.673293i \(-0.235121\pi\)
\(878\) 12.8901 34.5965i 0.435021 1.16758i
\(879\) 5.84872 0.197273
\(880\) 0 0
\(881\) 38.6037 1.30059 0.650297 0.759680i \(-0.274645\pi\)
0.650297 + 0.759680i \(0.274645\pi\)
\(882\) −0.957850 + 2.57083i −0.0322525 + 0.0865642i
\(883\) 57.2207i 1.92563i 0.270164 + 0.962814i \(0.412922\pi\)
−0.270164 + 0.962814i \(0.587078\pi\)
\(884\) 10.4645 12.0936i 0.351958 0.406752i
\(885\) 0 0
\(886\) 39.0891 + 14.5640i 1.31323 + 0.489287i
\(887\) 11.8099 0.396537 0.198269 0.980148i \(-0.436468\pi\)
0.198269 + 0.980148i \(0.436468\pi\)
\(888\) 32.7621 17.9338i 1.09942 0.601820i
\(889\) −15.5355 −0.521045
\(890\) 0 0
\(891\) 65.8224i 2.20513i
\(892\) 31.8487 + 27.5583i 1.06637 + 0.922721i
\(893\) 43.6201i 1.45969i
\(894\) 8.26280 22.1770i 0.276349 0.741709i
\(895\) 0 0
\(896\) 8.94912 + 11.8941i 0.298969 + 0.397355i
\(897\) −20.3512 −0.679508
\(898\) 9.24907 24.8241i 0.308645 0.828390i
\(899\) 46.2246i 1.54168i
\(900\) 0 0
\(901\) 0.125110i 0.00416803i
\(902\) −33.0026 12.2963i −1.09887 0.409421i
\(903\) −7.43561 −0.247441
\(904\) 30.7181 16.8150i 1.02167 0.559258i
\(905\) 0 0
\(906\) 25.5811 + 9.53111i 0.849874 + 0.316650i
\(907\) 36.7370i 1.21983i −0.792466 0.609917i \(-0.791203\pi\)
0.792466 0.609917i \(-0.208797\pi\)
\(908\) 9.08795 10.5028i 0.301594 0.348548i
\(909\) 0.921071i 0.0305500i
\(910\) 0 0
\(911\) −16.4318 −0.544409 −0.272205 0.962239i \(-0.587753\pi\)
−0.272205 + 0.962239i \(0.587753\pi\)
\(912\) −5.24273 36.1073i −0.173604 1.19563i
\(913\) 86.0205 2.84686
\(914\) −0.0549134 + 0.147385i −0.00181637 + 0.00487507i
\(915\) 0 0
\(916\) −26.0171 + 30.0675i −0.859628 + 0.993459i
\(917\) 16.6738i 0.550618i
\(918\) −17.2506 6.42731i −0.569355 0.212133i
\(919\) −30.9480 −1.02088 −0.510440 0.859913i \(-0.670518\pi\)
−0.510440 + 0.859913i \(0.670518\pi\)
\(920\) 0 0
\(921\) 51.4916 1.69671
\(922\) 4.92542 + 1.83513i 0.162210 + 0.0604369i
\(923\) 27.7610i 0.913764i
\(924\) −24.1117 20.8636i −0.793218 0.686362i
\(925\) 0 0
\(926\) −5.90535 + 15.8497i −0.194062 + 0.520853i
\(927\) −1.96727 −0.0646136
\(928\) 6.59454 30.5705i 0.216476 1.00353i
\(929\) 11.4537 0.375784 0.187892 0.982190i \(-0.439835\pi\)
0.187892 + 0.982190i \(0.439835\pi\)
\(930\) 0 0
\(931\) 26.1880i 0.858278i
\(932\) 14.2744 + 12.3514i 0.467573 + 0.404585i
\(933\) 51.0147i 1.67015i
\(934\) −22.6919 8.45466i −0.742502 0.276645i
\(935\) 0 0
\(936\) −1.48358 2.71024i −0.0484922 0.0885869i
\(937\) −29.7274 −0.971151 −0.485575 0.874195i \(-0.661390\pi\)
−0.485575 + 0.874195i \(0.661390\pi\)
\(938\) −18.8626 7.02790i −0.615885 0.229469i
\(939\) 39.7228i 1.29630i
\(940\) 0 0
\(941\) 22.9601i 0.748477i 0.927332 + 0.374239i \(0.122096\pi\)
−0.927332 + 0.374239i \(0.877904\pi\)
\(942\) 5.06564 13.5959i 0.165047 0.442980i
\(943\) −14.0963 −0.459039
\(944\) 4.04098 0.586746i 0.131523 0.0190969i
\(945\) 0 0
\(946\) −10.0396 + 26.9459i −0.326417 + 0.876087i
\(947\) 35.4333i 1.15143i −0.817651 0.575714i \(-0.804724\pi\)
0.817651 0.575714i \(-0.195276\pi\)
\(948\) 3.45472 3.99257i 0.112204 0.129672i
\(949\) 36.8337i 1.19567i
\(950\) 0 0
\(951\) −29.3699 −0.952385
\(952\) 8.79697 4.81543i 0.285111 0.156069i
\(953\) 1.35496 0.0438914 0.0219457 0.999759i \(-0.493014\pi\)
0.0219457 + 0.999759i \(0.493014\pi\)
\(954\) −0.0226500 0.00843904i −0.000733321 0.000273224i
\(955\) 0 0
\(956\) 32.3451 + 27.9878i 1.04612 + 0.905190i
\(957\) 66.9924i 2.16556i
\(958\) −3.80471 + 10.2117i −0.122925 + 0.329924i
\(959\) −5.70413 −0.184196
\(960\) 0 0
\(961\) 38.9099 1.25516
\(962\) −10.5409 + 28.2913i −0.339853 + 0.912149i
\(963\) 0.357722i 0.0115274i
\(964\) −17.2592 14.9342i −0.555882 0.480997i
\(965\) 0 0
\(966\) −11.9589 4.45570i −0.384772 0.143360i
\(967\) −19.6245 −0.631080 −0.315540 0.948912i \(-0.602186\pi\)
−0.315540 + 0.948912i \(0.602186\pi\)
\(968\) −80.8722 + 44.2692i −2.59933 + 1.42286i
\(969\) −24.5826 −0.789706
\(970\) 0 0
\(971\) 1.55749i 0.0499822i −0.999688 0.0249911i \(-0.992044\pi\)
0.999688 0.0249911i \(-0.00795575\pi\)
\(972\) −4.97997 + 5.75527i −0.159732 + 0.184600i
\(973\) 4.58884i 0.147112i
\(974\) 0.232592 0.624268i 0.00745274 0.0200028i
\(975\) 0 0
\(976\) 20.7104 3.00713i 0.662925 0.0962560i
\(977\) 49.4288 1.58137 0.790683 0.612226i \(-0.209726\pi\)
0.790683 + 0.612226i \(0.209726\pi\)
\(978\) 4.96913 13.3369i 0.158895 0.426468i
\(979\) 26.0270i 0.831825i
\(980\) 0 0
\(981\) 6.93833i 0.221524i
\(982\) 56.8689 + 21.1885i 1.81476 + 0.676151i
\(983\) −18.1091 −0.577591 −0.288795 0.957391i \(-0.593255\pi\)
−0.288795 + 0.957391i \(0.593255\pi\)
\(984\) −9.40089 17.1738i −0.299689 0.547481i
\(985\) 0 0
\(986\) −19.7449 7.35663i −0.628804 0.234283i
\(987\) 21.1911i 0.674521i
\(988\) 22.3029 + 19.2984i 0.709551 + 0.613965i
\(989\) 11.5093i 0.365976i
\(990\) 0 0
\(991\) 4.82935 0.153409 0.0767046 0.997054i \(-0.475560\pi\)
0.0767046 + 0.997054i \(0.475560\pi\)
\(992\) −46.2347 9.97355i −1.46795 0.316660i
\(993\) −9.90905 −0.314454
\(994\) −6.07800 + 16.3131i −0.192782 + 0.517419i
\(995\) 0 0
\(996\) 36.1613 + 31.2900i 1.14582 + 0.991460i
\(997\) 18.3807i 0.582122i 0.956705 + 0.291061i \(0.0940082\pi\)
−0.956705 + 0.291061i \(0.905992\pi\)
\(998\) 27.4529 + 10.2285i 0.869008 + 0.323779i
\(999\) 34.7533 1.09955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.18 yes 40
4.3 odd 2 4000.2.d.c.2001.25 40
5.2 odd 4 1000.2.f.c.749.1 20
5.3 odd 4 1000.2.f.d.749.20 20
5.4 even 2 inner 1000.2.d.c.501.23 yes 40
8.3 odd 2 4000.2.d.c.2001.26 40
8.5 even 2 inner 1000.2.d.c.501.17 40
20.3 even 4 4000.2.f.d.3249.16 20
20.7 even 4 4000.2.f.c.3249.5 20
20.19 odd 2 4000.2.d.c.2001.16 40
40.3 even 4 4000.2.f.c.3249.6 20
40.13 odd 4 1000.2.f.c.749.2 20
40.19 odd 2 4000.2.d.c.2001.15 40
40.27 even 4 4000.2.f.d.3249.15 20
40.29 even 2 inner 1000.2.d.c.501.24 yes 40
40.37 odd 4 1000.2.f.d.749.19 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.17 40 8.5 even 2 inner
1000.2.d.c.501.18 yes 40 1.1 even 1 trivial
1000.2.d.c.501.23 yes 40 5.4 even 2 inner
1000.2.d.c.501.24 yes 40 40.29 even 2 inner
1000.2.f.c.749.1 20 5.2 odd 4
1000.2.f.c.749.2 20 40.13 odd 4
1000.2.f.d.749.19 20 40.37 odd 4
1000.2.f.d.749.20 20 5.3 odd 4
4000.2.d.c.2001.15 40 40.19 odd 2
4000.2.d.c.2001.16 40 20.19 odd 2
4000.2.d.c.2001.25 40 4.3 odd 2
4000.2.d.c.2001.26 40 8.3 odd 2
4000.2.f.c.3249.5 20 20.7 even 4
4000.2.f.c.3249.6 20 40.3 even 4
4000.2.f.d.3249.15 20 40.27 even 4
4000.2.f.d.3249.16 20 20.3 even 4