Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1000,2,Mod(501,1000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1000.501");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1000 = 2^{3} \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1000.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.98504020213\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
501.1 | −1.41383 | − | 0.0329621i | 3.08659i | 1.99783 | + | 0.0932055i | 0 | 0.101740 | − | 4.36391i | −3.24242 | −2.82151 | − | 0.197629i | −6.52702 | 0 | ||||||||||
501.2 | −1.41383 | + | 0.0329621i | − | 3.08659i | 1.99783 | − | 0.0932055i | 0 | 0.101740 | + | 4.36391i | −3.24242 | −2.82151 | + | 0.197629i | −6.52702 | 0 | |||||||||
501.3 | −1.39686 | − | 0.220862i | − | 0.939252i | 1.90244 | + | 0.617026i | 0 | −0.207445 | + | 1.31200i | 1.90117 | −2.52117 | − | 1.28208i | 2.11781 | 0 | |||||||||
501.4 | −1.39686 | + | 0.220862i | 0.939252i | 1.90244 | − | 0.617026i | 0 | −0.207445 | − | 1.31200i | 1.90117 | −2.52117 | + | 1.28208i | 2.11781 | 0 | ||||||||||
501.5 | −1.36535 | − | 0.368522i | 0.513027i | 1.72838 | + | 1.00633i | 0 | 0.189062 | − | 0.700464i | 1.12889 | −1.98900 | − | 2.01094i | 2.73680 | 0 | ||||||||||
501.6 | −1.36535 | + | 0.368522i | − | 0.513027i | 1.72838 | − | 1.00633i | 0 | 0.189062 | + | 0.700464i | 1.12889 | −1.98900 | + | 2.01094i | 2.73680 | 0 | |||||||||
501.7 | −1.26751 | − | 0.627237i | 1.69676i | 1.21315 | + | 1.59005i | 0 | 1.06427 | − | 2.15066i | −4.40040 | −0.540334 | − | 2.77634i | 0.120998 | 0 | ||||||||||
501.8 | −1.26751 | + | 0.627237i | − | 1.69676i | 1.21315 | − | 1.59005i | 0 | 1.06427 | + | 2.15066i | −4.40040 | −0.540334 | + | 2.77634i | 0.120998 | 0 | |||||||||
501.9 | −1.23486 | − | 0.689292i | − | 2.52102i | 1.04975 | + | 1.70236i | 0 | −1.73772 | + | 3.11311i | 0.987050 | −0.122873 | − | 2.82576i | −3.35556 | 0 | |||||||||
501.10 | −1.23486 | + | 0.689292i | 2.52102i | 1.04975 | − | 1.70236i | 0 | −1.73772 | − | 3.11311i | 0.987050 | −0.122873 | + | 2.82576i | −3.35556 | 0 | ||||||||||
501.11 | −0.800179 | − | 1.16607i | 2.62662i | −0.719426 | + | 1.86613i | 0 | 3.06282 | − | 2.10177i | −0.269237 | 2.75170 | − | 0.654336i | −3.89913 | 0 | ||||||||||
501.12 | −0.800179 | + | 1.16607i | − | 2.62662i | −0.719426 | − | 1.86613i | 0 | 3.06282 | + | 2.10177i | −0.269237 | 2.75170 | + | 0.654336i | −3.89913 | 0 | |||||||||
501.13 | −0.739452 | − | 1.20549i | − | 2.07677i | −0.906422 | + | 1.78281i | 0 | −2.50353 | + | 1.53567i | 2.55636 | 2.81941 | − | 0.225614i | −1.31298 | 0 | |||||||||
501.14 | −0.739452 | + | 1.20549i | 2.07677i | −0.906422 | − | 1.78281i | 0 | −2.50353 | − | 1.53567i | 2.55636 | 2.81941 | + | 0.225614i | −1.31298 | 0 | ||||||||||
501.15 | −0.572751 | − | 1.29304i | 0.207209i | −1.34391 | + | 1.48118i | 0 | 0.267929 | − | 0.118679i | −2.73181 | 2.68496 | + | 0.889389i | 2.95706 | 0 | ||||||||||
501.16 | −0.572751 | + | 1.29304i | − | 0.207209i | −1.34391 | − | 1.48118i | 0 | 0.267929 | + | 0.118679i | −2.73181 | 2.68496 | − | 0.889389i | 2.95706 | 0 | |||||||||
501.17 | −0.493756 | − | 1.32522i | − | 1.83526i | −1.51241 | + | 1.30867i | 0 | −2.43212 | + | 0.906170i | 1.31564 | 2.48104 | + | 1.35811i | −0.368171 | 0 | |||||||||
501.18 | −0.493756 | + | 1.32522i | 1.83526i | −1.51241 | − | 1.30867i | 0 | −2.43212 | − | 0.906170i | 1.31564 | 2.48104 | − | 1.35811i | −0.368171 | 0 | ||||||||||
501.19 | −0.212863 | − | 1.39810i | 1.21236i | −1.90938 | + | 0.595207i | 0 | 1.69500 | − | 0.258065i | 4.63239 | 1.23860 | + | 2.54281i | 1.53019 | 0 | ||||||||||
501.20 | −0.212863 | + | 1.39810i | − | 1.21236i | −1.90938 | − | 0.595207i | 0 | 1.69500 | + | 0.258065i | 4.63239 | 1.23860 | − | 2.54281i | 1.53019 | 0 | |||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1000.2.d.c | ✓ | 40 |
4.b | odd | 2 | 1 | 4000.2.d.c | 40 | ||
5.b | even | 2 | 1 | inner | 1000.2.d.c | ✓ | 40 |
5.c | odd | 4 | 1 | 1000.2.f.c | 20 | ||
5.c | odd | 4 | 1 | 1000.2.f.d | 20 | ||
8.b | even | 2 | 1 | inner | 1000.2.d.c | ✓ | 40 |
8.d | odd | 2 | 1 | 4000.2.d.c | 40 | ||
20.d | odd | 2 | 1 | 4000.2.d.c | 40 | ||
20.e | even | 4 | 1 | 4000.2.f.c | 20 | ||
20.e | even | 4 | 1 | 4000.2.f.d | 20 | ||
40.e | odd | 2 | 1 | 4000.2.d.c | 40 | ||
40.f | even | 2 | 1 | inner | 1000.2.d.c | ✓ | 40 |
40.i | odd | 4 | 1 | 1000.2.f.c | 20 | ||
40.i | odd | 4 | 1 | 1000.2.f.d | 20 | ||
40.k | even | 4 | 1 | 4000.2.f.c | 20 | ||
40.k | even | 4 | 1 | 4000.2.f.d | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1000.2.d.c | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
1000.2.d.c | ✓ | 40 | 5.b | even | 2 | 1 | inner |
1000.2.d.c | ✓ | 40 | 8.b | even | 2 | 1 | inner |
1000.2.d.c | ✓ | 40 | 40.f | even | 2 | 1 | inner |
1000.2.f.c | 20 | 5.c | odd | 4 | 1 | ||
1000.2.f.c | 20 | 40.i | odd | 4 | 1 | ||
1000.2.f.d | 20 | 5.c | odd | 4 | 1 | ||
1000.2.f.d | 20 | 40.i | odd | 4 | 1 | ||
4000.2.d.c | 40 | 4.b | odd | 2 | 1 | ||
4000.2.d.c | 40 | 8.d | odd | 2 | 1 | ||
4000.2.d.c | 40 | 20.d | odd | 2 | 1 | ||
4000.2.d.c | 40 | 40.e | odd | 2 | 1 | ||
4000.2.f.c | 20 | 20.e | even | 4 | 1 | ||
4000.2.f.c | 20 | 40.k | even | 4 | 1 | ||
4000.2.f.d | 20 | 20.e | even | 4 | 1 | ||
4000.2.f.d | 20 | 40.k | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1000, [\chi])\):
\( T_{3}^{20} + 36 T_{3}^{18} + 538 T_{3}^{16} + 4348 T_{3}^{14} + 20735 T_{3}^{12} + 59708 T_{3}^{10} + \cdots + 256 \) |
\( T_{7}^{20} - 73 T_{7}^{18} + 2133 T_{7}^{16} - 32388 T_{7}^{14} + 279482 T_{7}^{12} - 1409126 T_{7}^{10} + \cdots + 119961 \) |