Properties

Label 4000.2.f.c.3249.6
Level $4000$
Weight $2$
Character 4000.3249
Analytic conductor $31.940$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(3249,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.3249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 6 x^{18} - 5 x^{17} - 3 x^{16} + 20 x^{15} - 28 x^{14} + 24 x^{13} + 16 x^{12} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3249.6
Root \(1.32522 + 0.493756i\) of defining polynomial
Character \(\chi\) \(=\) 4000.3249
Dual form 4000.2.f.c.3249.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83526 q^{3} +1.31564i q^{7} +0.368171 q^{9} +O(q^{10})\) \(q-1.83526 q^{3} +1.31564i q^{7} +0.368171 q^{9} -6.60274i q^{11} +2.96705 q^{13} -2.69502i q^{17} -4.97013i q^{19} -2.41454i q^{21} -3.73739i q^{23} +4.83008 q^{27} +5.52846i q^{29} -8.36121 q^{31} +12.1177i q^{33} +7.19517 q^{37} -5.44530 q^{39} -3.77169 q^{41} -3.07951 q^{43} +8.77645i q^{47} +5.26908 q^{49} +4.94606i q^{51} -0.0464228 q^{53} +9.12147i q^{57} +1.02084i q^{59} +5.23191i q^{61} +0.484382i q^{63} +10.8187 q^{67} +6.85908i q^{69} -9.35643 q^{71} -12.4143i q^{73} +8.68684 q^{77} +1.43842 q^{79} -9.96896 q^{81} -13.0280 q^{83} -10.1462i q^{87} -3.94185 q^{89} +3.90357i q^{91} +15.3450 q^{93} +1.00691i q^{97} -2.43094i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{3} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 4 q^{3} + 12 q^{9} + 6 q^{13} + 8 q^{27} - 24 q^{31} + 18 q^{37} + 4 q^{39} + 22 q^{41} + 60 q^{43} - 6 q^{49} + 10 q^{53} + 40 q^{67} - 48 q^{71} + 24 q^{77} + 48 q^{79} - 28 q^{81} - 40 q^{83} + 22 q^{89} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.83526 −1.05959 −0.529793 0.848127i \(-0.677730\pi\)
−0.529793 + 0.848127i \(0.677730\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.31564i 0.497266i 0.968598 + 0.248633i \(0.0799813\pi\)
−0.968598 + 0.248633i \(0.920019\pi\)
\(8\) 0 0
\(9\) 0.368171 0.122724
\(10\) 0 0
\(11\) − 6.60274i − 1.99080i −0.0958055 0.995400i \(-0.530543\pi\)
0.0958055 0.995400i \(-0.469457\pi\)
\(12\) 0 0
\(13\) 2.96705 0.822911 0.411456 0.911430i \(-0.365021\pi\)
0.411456 + 0.911430i \(0.365021\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.69502i − 0.653639i −0.945087 0.326819i \(-0.894023\pi\)
0.945087 0.326819i \(-0.105977\pi\)
\(18\) 0 0
\(19\) − 4.97013i − 1.14023i −0.821566 0.570113i \(-0.806899\pi\)
0.821566 0.570113i \(-0.193101\pi\)
\(20\) 0 0
\(21\) − 2.41454i − 0.526897i
\(22\) 0 0
\(23\) − 3.73739i − 0.779301i −0.920963 0.389650i \(-0.872596\pi\)
0.920963 0.389650i \(-0.127404\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.83008 0.929550
\(28\) 0 0
\(29\) 5.52846i 1.02661i 0.858206 + 0.513305i \(0.171579\pi\)
−0.858206 + 0.513305i \(0.828421\pi\)
\(30\) 0 0
\(31\) −8.36121 −1.50172 −0.750859 0.660462i \(-0.770360\pi\)
−0.750859 + 0.660462i \(0.770360\pi\)
\(32\) 0 0
\(33\) 12.1177i 2.10943i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.19517 1.18288 0.591439 0.806349i \(-0.298560\pi\)
0.591439 + 0.806349i \(0.298560\pi\)
\(38\) 0 0
\(39\) −5.44530 −0.871945
\(40\) 0 0
\(41\) −3.77169 −0.589040 −0.294520 0.955645i \(-0.595160\pi\)
−0.294520 + 0.955645i \(0.595160\pi\)
\(42\) 0 0
\(43\) −3.07951 −0.469621 −0.234810 0.972041i \(-0.575447\pi\)
−0.234810 + 0.972041i \(0.575447\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.77645i 1.28018i 0.768301 + 0.640088i \(0.221102\pi\)
−0.768301 + 0.640088i \(0.778898\pi\)
\(48\) 0 0
\(49\) 5.26908 0.752726
\(50\) 0 0
\(51\) 4.94606i 0.692587i
\(52\) 0 0
\(53\) −0.0464228 −0.00637666 −0.00318833 0.999995i \(-0.501015\pi\)
−0.00318833 + 0.999995i \(0.501015\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.12147i 1.20817i
\(58\) 0 0
\(59\) 1.02084i 0.132902i 0.997790 + 0.0664510i \(0.0211676\pi\)
−0.997790 + 0.0664510i \(0.978832\pi\)
\(60\) 0 0
\(61\) 5.23191i 0.669877i 0.942240 + 0.334938i \(0.108716\pi\)
−0.942240 + 0.334938i \(0.891284\pi\)
\(62\) 0 0
\(63\) 0.484382i 0.0610264i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.8187 1.32172 0.660858 0.750511i \(-0.270193\pi\)
0.660858 + 0.750511i \(0.270193\pi\)
\(68\) 0 0
\(69\) 6.85908i 0.825737i
\(70\) 0 0
\(71\) −9.35643 −1.11040 −0.555202 0.831715i \(-0.687359\pi\)
−0.555202 + 0.831715i \(0.687359\pi\)
\(72\) 0 0
\(73\) − 12.4143i − 1.45298i −0.687177 0.726490i \(-0.741150\pi\)
0.687177 0.726490i \(-0.258850\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.68684 0.989958
\(78\) 0 0
\(79\) 1.43842 0.161835 0.0809174 0.996721i \(-0.474215\pi\)
0.0809174 + 0.996721i \(0.474215\pi\)
\(80\) 0 0
\(81\) −9.96896 −1.10766
\(82\) 0 0
\(83\) −13.0280 −1.43001 −0.715005 0.699120i \(-0.753575\pi\)
−0.715005 + 0.699120i \(0.753575\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 10.1462i − 1.08778i
\(88\) 0 0
\(89\) −3.94185 −0.417835 −0.208917 0.977933i \(-0.566994\pi\)
−0.208917 + 0.977933i \(0.566994\pi\)
\(90\) 0 0
\(91\) 3.90357i 0.409206i
\(92\) 0 0
\(93\) 15.3450 1.59120
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00691i 0.102236i 0.998693 + 0.0511181i \(0.0162785\pi\)
−0.998693 + 0.0511181i \(0.983722\pi\)
\(98\) 0 0
\(99\) − 2.43094i − 0.244318i
\(100\) 0 0
\(101\) − 2.50175i − 0.248933i −0.992224 0.124466i \(-0.960278\pi\)
0.992224 0.124466i \(-0.0397219\pi\)
\(102\) 0 0
\(103\) − 5.34336i − 0.526497i −0.964728 0.263248i \(-0.915206\pi\)
0.964728 0.263248i \(-0.0847938\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.971619 0.0939299 0.0469650 0.998897i \(-0.485045\pi\)
0.0469650 + 0.998897i \(0.485045\pi\)
\(108\) 0 0
\(109\) − 18.8454i − 1.80506i −0.430626 0.902531i \(-0.641707\pi\)
0.430626 0.902531i \(-0.358293\pi\)
\(110\) 0 0
\(111\) −13.2050 −1.25336
\(112\) 0 0
\(113\) 12.3812i 1.16472i 0.812930 + 0.582361i \(0.197871\pi\)
−0.812930 + 0.582361i \(0.802129\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.09238 0.100991
\(118\) 0 0
\(119\) 3.54568 0.325032
\(120\) 0 0
\(121\) −32.5961 −2.96329
\(122\) 0 0
\(123\) 6.92203 0.624139
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 11.8083i − 1.04782i −0.851774 0.523909i \(-0.824473\pi\)
0.851774 0.523909i \(-0.175527\pi\)
\(128\) 0 0
\(129\) 5.65169 0.497604
\(130\) 0 0
\(131\) − 12.6735i − 1.10729i −0.832752 0.553646i \(-0.813236\pi\)
0.832752 0.553646i \(-0.186764\pi\)
\(132\) 0 0
\(133\) 6.53892 0.566996
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.33562i 0.370417i 0.982699 + 0.185209i \(0.0592961\pi\)
−0.982699 + 0.185209i \(0.940704\pi\)
\(138\) 0 0
\(139\) − 3.48791i − 0.295841i −0.988999 0.147920i \(-0.952742\pi\)
0.988999 0.147920i \(-0.0472579\pi\)
\(140\) 0 0
\(141\) − 16.1070i − 1.35646i
\(142\) 0 0
\(143\) − 19.5906i − 1.63825i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.67013 −0.797579
\(148\) 0 0
\(149\) 9.11838i 0.747007i 0.927629 + 0.373503i \(0.121844\pi\)
−0.927629 + 0.373503i \(0.878156\pi\)
\(150\) 0 0
\(151\) 10.5180 0.855944 0.427972 0.903792i \(-0.359228\pi\)
0.427972 + 0.903792i \(0.359228\pi\)
\(152\) 0 0
\(153\) − 0.992229i − 0.0802170i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.59017 −0.446144 −0.223072 0.974802i \(-0.571608\pi\)
−0.223072 + 0.974802i \(0.571608\pi\)
\(158\) 0 0
\(159\) 0.0851977 0.00675662
\(160\) 0 0
\(161\) 4.91708 0.387520
\(162\) 0 0
\(163\) −5.48367 −0.429514 −0.214757 0.976667i \(-0.568896\pi\)
−0.214757 + 0.976667i \(0.568896\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.4503i 1.50511i 0.658528 + 0.752556i \(0.271179\pi\)
−0.658528 + 0.752556i \(0.728821\pi\)
\(168\) 0 0
\(169\) −4.19663 −0.322817
\(170\) 0 0
\(171\) − 1.82986i − 0.139933i
\(172\) 0 0
\(173\) −11.9677 −0.909885 −0.454942 0.890521i \(-0.650340\pi\)
−0.454942 + 0.890521i \(0.650340\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 1.87350i − 0.140821i
\(178\) 0 0
\(179\) 11.0142i 0.823244i 0.911355 + 0.411622i \(0.135038\pi\)
−0.911355 + 0.411622i \(0.864962\pi\)
\(180\) 0 0
\(181\) − 18.6306i − 1.38480i −0.721511 0.692402i \(-0.756552\pi\)
0.721511 0.692402i \(-0.243448\pi\)
\(182\) 0 0
\(183\) − 9.60190i − 0.709793i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −17.7945 −1.30126
\(188\) 0 0
\(189\) 6.35466i 0.462234i
\(190\) 0 0
\(191\) −10.6266 −0.768912 −0.384456 0.923143i \(-0.625611\pi\)
−0.384456 + 0.923143i \(0.625611\pi\)
\(192\) 0 0
\(193\) 17.9777i 1.29406i 0.762464 + 0.647031i \(0.223989\pi\)
−0.762464 + 0.647031i \(0.776011\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.6813 −1.68722 −0.843610 0.536956i \(-0.819574\pi\)
−0.843610 + 0.536956i \(0.819574\pi\)
\(198\) 0 0
\(199\) 17.9303 1.27104 0.635522 0.772082i \(-0.280785\pi\)
0.635522 + 0.772082i \(0.280785\pi\)
\(200\) 0 0
\(201\) −19.8551 −1.40047
\(202\) 0 0
\(203\) −7.27348 −0.510498
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.37600i − 0.0956387i
\(208\) 0 0
\(209\) −32.8165 −2.26996
\(210\) 0 0
\(211\) − 15.0943i − 1.03913i −0.854430 0.519566i \(-0.826094\pi\)
0.854430 0.519566i \(-0.173906\pi\)
\(212\) 0 0
\(213\) 17.1715 1.17657
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 11.0004i − 0.746754i
\(218\) 0 0
\(219\) 22.7834i 1.53956i
\(220\) 0 0
\(221\) − 7.99626i − 0.537886i
\(222\) 0 0
\(223\) 21.0583i 1.41017i 0.709125 + 0.705083i \(0.249090\pi\)
−0.709125 + 0.705083i \(0.750910\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.94442 0.460917 0.230459 0.973082i \(-0.425977\pi\)
0.230459 + 0.973082i \(0.425977\pi\)
\(228\) 0 0
\(229\) − 19.8805i − 1.31374i −0.754003 0.656871i \(-0.771879\pi\)
0.754003 0.656871i \(-0.228121\pi\)
\(230\) 0 0
\(231\) −15.9426 −1.04895
\(232\) 0 0
\(233\) − 9.43816i − 0.618315i −0.951011 0.309157i \(-0.899953\pi\)
0.951011 0.309157i \(-0.100047\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.63987 −0.171478
\(238\) 0 0
\(239\) −21.3865 −1.38338 −0.691688 0.722197i \(-0.743132\pi\)
−0.691688 + 0.722197i \(0.743132\pi\)
\(240\) 0 0
\(241\) 11.4117 0.735094 0.367547 0.930005i \(-0.380198\pi\)
0.367547 + 0.930005i \(0.380198\pi\)
\(242\) 0 0
\(243\) 3.80536 0.244114
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 14.7466i − 0.938305i
\(248\) 0 0
\(249\) 23.9097 1.51522
\(250\) 0 0
\(251\) 2.76130i 0.174292i 0.996196 + 0.0871459i \(0.0277746\pi\)
−0.996196 + 0.0871459i \(0.972225\pi\)
\(252\) 0 0
\(253\) −24.6770 −1.55143
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 12.1685i − 0.759052i −0.925181 0.379526i \(-0.876087\pi\)
0.925181 0.379526i \(-0.123913\pi\)
\(258\) 0 0
\(259\) 9.46627i 0.588206i
\(260\) 0 0
\(261\) 2.03542i 0.125989i
\(262\) 0 0
\(263\) 22.4088i 1.38179i 0.722956 + 0.690894i \(0.242783\pi\)
−0.722956 + 0.690894i \(0.757217\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.23430 0.442732
\(268\) 0 0
\(269\) − 29.7546i − 1.81417i −0.420946 0.907086i \(-0.638302\pi\)
0.420946 0.907086i \(-0.361698\pi\)
\(270\) 0 0
\(271\) −15.1173 −0.918308 −0.459154 0.888357i \(-0.651847\pi\)
−0.459154 + 0.888357i \(0.651847\pi\)
\(272\) 0 0
\(273\) − 7.16407i − 0.433589i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.51304 0.571583 0.285792 0.958292i \(-0.407743\pi\)
0.285792 + 0.958292i \(0.407743\pi\)
\(278\) 0 0
\(279\) −3.07836 −0.184296
\(280\) 0 0
\(281\) −17.5890 −1.04927 −0.524637 0.851326i \(-0.675799\pi\)
−0.524637 + 0.851326i \(0.675799\pi\)
\(282\) 0 0
\(283\) 15.3245 0.910944 0.455472 0.890250i \(-0.349471\pi\)
0.455472 + 0.890250i \(0.349471\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.96220i − 0.292909i
\(288\) 0 0
\(289\) 9.73686 0.572756
\(290\) 0 0
\(291\) − 1.84794i − 0.108328i
\(292\) 0 0
\(293\) −3.18687 −0.186179 −0.0930894 0.995658i \(-0.529674\pi\)
−0.0930894 + 0.995658i \(0.529674\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 31.8918i − 1.85055i
\(298\) 0 0
\(299\) − 11.0890i − 0.641295i
\(300\) 0 0
\(301\) − 4.05153i − 0.233526i
\(302\) 0 0
\(303\) 4.59135i 0.263766i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0569 −1.60129 −0.800645 0.599138i \(-0.795510\pi\)
−0.800645 + 0.599138i \(0.795510\pi\)
\(308\) 0 0
\(309\) 9.80644i 0.557869i
\(310\) 0 0
\(311\) −27.7970 −1.57622 −0.788112 0.615532i \(-0.788941\pi\)
−0.788112 + 0.615532i \(0.788941\pi\)
\(312\) 0 0
\(313\) − 21.6443i − 1.22341i −0.791088 0.611703i \(-0.790485\pi\)
0.791088 0.611703i \(-0.209515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.0032 −0.898827 −0.449414 0.893324i \(-0.648367\pi\)
−0.449414 + 0.893324i \(0.648367\pi\)
\(318\) 0 0
\(319\) 36.5030 2.04377
\(320\) 0 0
\(321\) −1.78317 −0.0995269
\(322\) 0 0
\(323\) −13.3946 −0.745296
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 34.5862i 1.91262i
\(328\) 0 0
\(329\) −11.5467 −0.636589
\(330\) 0 0
\(331\) 5.39927i 0.296771i 0.988930 + 0.148385i \(0.0474076\pi\)
−0.988930 + 0.148385i \(0.952592\pi\)
\(332\) 0 0
\(333\) 2.64905 0.145167
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.3679i 1.43635i 0.695861 + 0.718176i \(0.255023\pi\)
−0.695861 + 0.718176i \(0.744977\pi\)
\(338\) 0 0
\(339\) − 22.7226i − 1.23412i
\(340\) 0 0
\(341\) 55.2069i 2.98962i
\(342\) 0 0
\(343\) 16.1417i 0.871571i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.70069 −0.467077 −0.233539 0.972348i \(-0.575031\pi\)
−0.233539 + 0.972348i \(0.575031\pi\)
\(348\) 0 0
\(349\) 14.7757i 0.790923i 0.918483 + 0.395462i \(0.129415\pi\)
−0.918483 + 0.395462i \(0.870585\pi\)
\(350\) 0 0
\(351\) 14.3311 0.764937
\(352\) 0 0
\(353\) − 17.4259i − 0.927485i −0.885970 0.463743i \(-0.846506\pi\)
0.885970 0.463743i \(-0.153494\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.50725 −0.344400
\(358\) 0 0
\(359\) −12.3632 −0.652506 −0.326253 0.945282i \(-0.605786\pi\)
−0.326253 + 0.945282i \(0.605786\pi\)
\(360\) 0 0
\(361\) −5.70221 −0.300116
\(362\) 0 0
\(363\) 59.8223 3.13986
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.15969i 0.217134i 0.994089 + 0.108567i \(0.0346262\pi\)
−0.994089 + 0.108567i \(0.965374\pi\)
\(368\) 0 0
\(369\) −1.38863 −0.0722891
\(370\) 0 0
\(371\) − 0.0610758i − 0.00317090i
\(372\) 0 0
\(373\) −33.9114 −1.75586 −0.877932 0.478786i \(-0.841077\pi\)
−0.877932 + 0.478786i \(0.841077\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.4032i 0.844808i
\(378\) 0 0
\(379\) − 8.17397i − 0.419869i −0.977715 0.209934i \(-0.932675\pi\)
0.977715 0.209934i \(-0.0673250\pi\)
\(380\) 0 0
\(381\) 21.6713i 1.11025i
\(382\) 0 0
\(383\) − 3.27290i − 0.167238i −0.996498 0.0836188i \(-0.973352\pi\)
0.996498 0.0836188i \(-0.0266478\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.13379 −0.0576336
\(388\) 0 0
\(389\) 2.07560i 0.105237i 0.998615 + 0.0526186i \(0.0167568\pi\)
−0.998615 + 0.0526186i \(0.983243\pi\)
\(390\) 0 0
\(391\) −10.0724 −0.509381
\(392\) 0 0
\(393\) 23.2592i 1.17327i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.23114 −0.312732 −0.156366 0.987699i \(-0.549978\pi\)
−0.156366 + 0.987699i \(0.549978\pi\)
\(398\) 0 0
\(399\) −12.0006 −0.600781
\(400\) 0 0
\(401\) 20.9959 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(402\) 0 0
\(403\) −24.8081 −1.23578
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 47.5078i − 2.35488i
\(408\) 0 0
\(409\) −6.61521 −0.327101 −0.163551 0.986535i \(-0.552295\pi\)
−0.163551 + 0.986535i \(0.552295\pi\)
\(410\) 0 0
\(411\) − 7.95698i − 0.392489i
\(412\) 0 0
\(413\) −1.34306 −0.0660876
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.40121i 0.313469i
\(418\) 0 0
\(419\) 17.6296i 0.861262i 0.902528 + 0.430631i \(0.141709\pi\)
−0.902528 + 0.430631i \(0.858291\pi\)
\(420\) 0 0
\(421\) − 18.0508i − 0.879742i −0.898061 0.439871i \(-0.855024\pi\)
0.898061 0.439871i \(-0.144976\pi\)
\(422\) 0 0
\(423\) 3.23124i 0.157108i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.88332 −0.333107
\(428\) 0 0
\(429\) 35.9539i 1.73587i
\(430\) 0 0
\(431\) −4.44104 −0.213917 −0.106959 0.994263i \(-0.534111\pi\)
−0.106959 + 0.994263i \(0.534111\pi\)
\(432\) 0 0
\(433\) − 24.5345i − 1.17905i −0.807749 0.589526i \(-0.799315\pi\)
0.807749 0.589526i \(-0.200685\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.5753 −0.888579
\(438\) 0 0
\(439\) −26.1063 −1.24598 −0.622992 0.782228i \(-0.714083\pi\)
−0.622992 + 0.782228i \(0.714083\pi\)
\(440\) 0 0
\(441\) 1.93993 0.0923774
\(442\) 0 0
\(443\) 29.4964 1.40141 0.700707 0.713449i \(-0.252868\pi\)
0.700707 + 0.713449i \(0.252868\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 16.7346i − 0.791518i
\(448\) 0 0
\(449\) 18.7321 0.884021 0.442010 0.897010i \(-0.354265\pi\)
0.442010 + 0.897010i \(0.354265\pi\)
\(450\) 0 0
\(451\) 24.9035i 1.17266i
\(452\) 0 0
\(453\) −19.3033 −0.906947
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 0.111216i − 0.00520245i −0.999997 0.00260123i \(-0.999172\pi\)
0.999997 0.00260123i \(-0.000827997\pi\)
\(458\) 0 0
\(459\) − 13.0172i − 0.607590i
\(460\) 0 0
\(461\) 3.71668i 0.173103i 0.996247 + 0.0865516i \(0.0275847\pi\)
−0.996247 + 0.0865516i \(0.972415\pi\)
\(462\) 0 0
\(463\) − 11.9601i − 0.555831i −0.960606 0.277915i \(-0.910356\pi\)
0.960606 0.277915i \(-0.0896435\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.1232 0.792365 0.396183 0.918172i \(-0.370335\pi\)
0.396183 + 0.918172i \(0.370335\pi\)
\(468\) 0 0
\(469\) 14.2336i 0.657244i
\(470\) 0 0
\(471\) 10.2594 0.472728
\(472\) 0 0
\(473\) 20.3332i 0.934921i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.0170915 −0.000782567 0
\(478\) 0 0
\(479\) 7.70565 0.352080 0.176040 0.984383i \(-0.443671\pi\)
0.176040 + 0.984383i \(0.443671\pi\)
\(480\) 0 0
\(481\) 21.3484 0.973404
\(482\) 0 0
\(483\) −9.02410 −0.410611
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 0.471068i − 0.0213461i −0.999943 0.0106731i \(-0.996603\pi\)
0.999943 0.0106731i \(-0.00339740\pi\)
\(488\) 0 0
\(489\) 10.0639 0.455107
\(490\) 0 0
\(491\) − 42.9128i − 1.93663i −0.249735 0.968314i \(-0.580343\pi\)
0.249735 0.968314i \(-0.419657\pi\)
\(492\) 0 0
\(493\) 14.8993 0.671032
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 12.3097i − 0.552167i
\(498\) 0 0
\(499\) 20.7158i 0.927365i 0.886001 + 0.463683i \(0.153472\pi\)
−0.886001 + 0.463683i \(0.846528\pi\)
\(500\) 0 0
\(501\) − 35.6964i − 1.59480i
\(502\) 0 0
\(503\) − 6.72612i − 0.299903i −0.988693 0.149951i \(-0.952088\pi\)
0.988693 0.149951i \(-0.0479117\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.70189 0.342053
\(508\) 0 0
\(509\) − 28.6335i − 1.26916i −0.772858 0.634579i \(-0.781174\pi\)
0.772858 0.634579i \(-0.218826\pi\)
\(510\) 0 0
\(511\) 16.3327 0.722518
\(512\) 0 0
\(513\) − 24.0062i − 1.05990i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 57.9486 2.54858
\(518\) 0 0
\(519\) 21.9637 0.964102
\(520\) 0 0
\(521\) −23.0885 −1.01152 −0.505762 0.862673i \(-0.668789\pi\)
−0.505762 + 0.862673i \(0.668789\pi\)
\(522\) 0 0
\(523\) −11.3256 −0.495236 −0.247618 0.968858i \(-0.579648\pi\)
−0.247618 + 0.968858i \(0.579648\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.5337i 0.981581i
\(528\) 0 0
\(529\) 9.03188 0.392690
\(530\) 0 0
\(531\) 0.375844i 0.0163102i
\(532\) 0 0
\(533\) −11.1908 −0.484727
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 20.2140i − 0.872298i
\(538\) 0 0
\(539\) − 34.7904i − 1.49853i
\(540\) 0 0
\(541\) − 28.1159i − 1.20880i −0.796683 0.604398i \(-0.793414\pi\)
0.796683 0.604398i \(-0.206586\pi\)
\(542\) 0 0
\(543\) 34.1920i 1.46732i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −25.7268 −1.10000 −0.549998 0.835166i \(-0.685372\pi\)
−0.549998 + 0.835166i \(0.685372\pi\)
\(548\) 0 0
\(549\) 1.92624i 0.0822098i
\(550\) 0 0
\(551\) 27.4772 1.17057
\(552\) 0 0
\(553\) 1.89245i 0.0804750i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.3682 0.481685 0.240842 0.970564i \(-0.422576\pi\)
0.240842 + 0.970564i \(0.422576\pi\)
\(558\) 0 0
\(559\) −9.13705 −0.386456
\(560\) 0 0
\(561\) 32.6575 1.37880
\(562\) 0 0
\(563\) 6.10463 0.257279 0.128640 0.991691i \(-0.458939\pi\)
0.128640 + 0.991691i \(0.458939\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 13.1156i − 0.550803i
\(568\) 0 0
\(569\) −20.0788 −0.841749 −0.420875 0.907119i \(-0.638277\pi\)
−0.420875 + 0.907119i \(0.638277\pi\)
\(570\) 0 0
\(571\) 12.1145i 0.506975i 0.967339 + 0.253487i \(0.0815776\pi\)
−0.967339 + 0.253487i \(0.918422\pi\)
\(572\) 0 0
\(573\) 19.5025 0.814729
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.1530i 1.54670i 0.633979 + 0.773351i \(0.281421\pi\)
−0.633979 + 0.773351i \(0.718579\pi\)
\(578\) 0 0
\(579\) − 32.9937i − 1.37117i
\(580\) 0 0
\(581\) − 17.1402i − 0.711095i
\(582\) 0 0
\(583\) 0.306517i 0.0126946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6112 0.603071 0.301535 0.953455i \(-0.402501\pi\)
0.301535 + 0.953455i \(0.402501\pi\)
\(588\) 0 0
\(589\) 41.5563i 1.71230i
\(590\) 0 0
\(591\) 43.4612 1.78776
\(592\) 0 0
\(593\) − 43.9414i − 1.80446i −0.431257 0.902229i \(-0.641930\pi\)
0.431257 0.902229i \(-0.358070\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −32.9067 −1.34678
\(598\) 0 0
\(599\) −19.8918 −0.812756 −0.406378 0.913705i \(-0.633208\pi\)
−0.406378 + 0.913705i \(0.633208\pi\)
\(600\) 0 0
\(601\) −7.20689 −0.293975 −0.146988 0.989138i \(-0.546958\pi\)
−0.146988 + 0.989138i \(0.546958\pi\)
\(602\) 0 0
\(603\) 3.98314 0.162206
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.17988i 0.250834i 0.992104 + 0.125417i \(0.0400268\pi\)
−0.992104 + 0.125417i \(0.959973\pi\)
\(608\) 0 0
\(609\) 13.3487 0.540917
\(610\) 0 0
\(611\) 26.0401i 1.05347i
\(612\) 0 0
\(613\) 14.3999 0.581605 0.290803 0.956783i \(-0.406078\pi\)
0.290803 + 0.956783i \(0.406078\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.5229i 1.55087i 0.631425 + 0.775437i \(0.282470\pi\)
−0.631425 + 0.775437i \(0.717530\pi\)
\(618\) 0 0
\(619\) 4.77140i 0.191779i 0.995392 + 0.0958894i \(0.0305695\pi\)
−0.995392 + 0.0958894i \(0.969430\pi\)
\(620\) 0 0
\(621\) − 18.0519i − 0.724399i
\(622\) 0 0
\(623\) − 5.18606i − 0.207775i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 60.2267 2.40522
\(628\) 0 0
\(629\) − 19.3911i − 0.773175i
\(630\) 0 0
\(631\) 16.4566 0.655127 0.327563 0.944829i \(-0.393772\pi\)
0.327563 + 0.944829i \(0.393772\pi\)
\(632\) 0 0
\(633\) 27.7019i 1.10105i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.6336 0.619427
\(638\) 0 0
\(639\) −3.44477 −0.136273
\(640\) 0 0
\(641\) 37.6381 1.48662 0.743309 0.668949i \(-0.233255\pi\)
0.743309 + 0.668949i \(0.233255\pi\)
\(642\) 0 0
\(643\) −0.647618 −0.0255396 −0.0127698 0.999918i \(-0.504065\pi\)
−0.0127698 + 0.999918i \(0.504065\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.6274i 1.59723i 0.601845 + 0.798613i \(0.294433\pi\)
−0.601845 + 0.798613i \(0.705567\pi\)
\(648\) 0 0
\(649\) 6.74033 0.264581
\(650\) 0 0
\(651\) 20.1885i 0.791250i
\(652\) 0 0
\(653\) −21.7949 −0.852900 −0.426450 0.904511i \(-0.640236\pi\)
−0.426450 + 0.904511i \(0.640236\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 4.57057i − 0.178315i
\(658\) 0 0
\(659\) − 10.4657i − 0.407684i −0.979004 0.203842i \(-0.934657\pi\)
0.979004 0.203842i \(-0.0653429\pi\)
\(660\) 0 0
\(661\) 23.8297i 0.926870i 0.886131 + 0.463435i \(0.153383\pi\)
−0.886131 + 0.463435i \(0.846617\pi\)
\(662\) 0 0
\(663\) 14.6752i 0.569937i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.6620 0.800037
\(668\) 0 0
\(669\) − 38.6474i − 1.49419i
\(670\) 0 0
\(671\) 34.5449 1.33359
\(672\) 0 0
\(673\) − 18.0022i − 0.693935i −0.937877 0.346968i \(-0.887211\pi\)
0.937877 0.346968i \(-0.112789\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0024 1.46055 0.730276 0.683152i \(-0.239391\pi\)
0.730276 + 0.683152i \(0.239391\pi\)
\(678\) 0 0
\(679\) −1.32473 −0.0508386
\(680\) 0 0
\(681\) −12.7448 −0.488382
\(682\) 0 0
\(683\) 44.0579 1.68583 0.842915 0.538046i \(-0.180837\pi\)
0.842915 + 0.538046i \(0.180837\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 36.4859i 1.39202i
\(688\) 0 0
\(689\) −0.137739 −0.00524742
\(690\) 0 0
\(691\) 6.13682i 0.233456i 0.993164 + 0.116728i \(0.0372405\pi\)
−0.993164 + 0.116728i \(0.962759\pi\)
\(692\) 0 0
\(693\) 3.19824 0.121491
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.1648i 0.385019i
\(698\) 0 0
\(699\) 17.3215i 0.655158i
\(700\) 0 0
\(701\) 41.6486i 1.57305i 0.617561 + 0.786523i \(0.288121\pi\)
−0.617561 + 0.786523i \(0.711879\pi\)
\(702\) 0 0
\(703\) − 35.7609i − 1.34875i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.29140 0.123786
\(708\) 0 0
\(709\) 46.6032i 1.75022i 0.483925 + 0.875109i \(0.339211\pi\)
−0.483925 + 0.875109i \(0.660789\pi\)
\(710\) 0 0
\(711\) 0.529584 0.0198610
\(712\) 0 0
\(713\) 31.2492i 1.17029i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 39.2497 1.46581
\(718\) 0 0
\(719\) −33.3634 −1.24424 −0.622122 0.782920i \(-0.713729\pi\)
−0.622122 + 0.782920i \(0.713729\pi\)
\(720\) 0 0
\(721\) 7.02995 0.261809
\(722\) 0 0
\(723\) −20.9435 −0.778895
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 34.3672i − 1.27461i −0.770612 0.637305i \(-0.780049\pi\)
0.770612 0.637305i \(-0.219951\pi\)
\(728\) 0 0
\(729\) 22.9231 0.849002
\(730\) 0 0
\(731\) 8.29934i 0.306962i
\(732\) 0 0
\(733\) −40.7127 −1.50376 −0.751878 0.659302i \(-0.770852\pi\)
−0.751878 + 0.659302i \(0.770852\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 71.4331i − 2.63127i
\(738\) 0 0
\(739\) 22.9998i 0.846061i 0.906115 + 0.423030i \(0.139034\pi\)
−0.906115 + 0.423030i \(0.860966\pi\)
\(740\) 0 0
\(741\) 27.0638i 0.994215i
\(742\) 0 0
\(743\) − 14.7518i − 0.541192i −0.962693 0.270596i \(-0.912779\pi\)
0.962693 0.270596i \(-0.0872208\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.79654 −0.175496
\(748\) 0 0
\(749\) 1.27830i 0.0467082i
\(750\) 0 0
\(751\) 19.6790 0.718099 0.359049 0.933319i \(-0.383101\pi\)
0.359049 + 0.933319i \(0.383101\pi\)
\(752\) 0 0
\(753\) − 5.06770i − 0.184677i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.22189 0.117102 0.0585508 0.998284i \(-0.481352\pi\)
0.0585508 + 0.998284i \(0.481352\pi\)
\(758\) 0 0
\(759\) 45.2887 1.64388
\(760\) 0 0
\(761\) 21.5082 0.779672 0.389836 0.920884i \(-0.372532\pi\)
0.389836 + 0.920884i \(0.372532\pi\)
\(762\) 0 0
\(763\) 24.7938 0.897596
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.02888i 0.109366i
\(768\) 0 0
\(769\) −16.0974 −0.580487 −0.290243 0.956953i \(-0.593736\pi\)
−0.290243 + 0.956953i \(0.593736\pi\)
\(770\) 0 0
\(771\) 22.3324i 0.804281i
\(772\) 0 0
\(773\) −2.13036 −0.0766237 −0.0383118 0.999266i \(-0.512198\pi\)
−0.0383118 + 0.999266i \(0.512198\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 17.3731i − 0.623255i
\(778\) 0 0
\(779\) 18.7458i 0.671639i
\(780\) 0 0
\(781\) 61.7781i 2.21059i
\(782\) 0 0
\(783\) 26.7029i 0.954285i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.4913 0.409619 0.204810 0.978802i \(-0.434342\pi\)
0.204810 + 0.978802i \(0.434342\pi\)
\(788\) 0 0
\(789\) − 41.1260i − 1.46412i
\(790\) 0 0
\(791\) −16.2892 −0.579177
\(792\) 0 0
\(793\) 15.5233i 0.551249i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.3363 −0.507818 −0.253909 0.967228i \(-0.581716\pi\)
−0.253909 + 0.967228i \(0.581716\pi\)
\(798\) 0 0
\(799\) 23.6527 0.836773
\(800\) 0 0
\(801\) −1.45127 −0.0512782
\(802\) 0 0
\(803\) −81.9681 −2.89259
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 54.6074i 1.92227i
\(808\) 0 0
\(809\) −43.6620 −1.53508 −0.767538 0.641004i \(-0.778518\pi\)
−0.767538 + 0.641004i \(0.778518\pi\)
\(810\) 0 0
\(811\) 18.8353i 0.661396i 0.943737 + 0.330698i \(0.107284\pi\)
−0.943737 + 0.330698i \(0.892716\pi\)
\(812\) 0 0
\(813\) 27.7441 0.973027
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.3056i 0.535474i
\(818\) 0 0
\(819\) 1.43718i 0.0502193i
\(820\) 0 0
\(821\) − 1.64016i − 0.0572421i −0.999590 0.0286210i \(-0.990888\pi\)
0.999590 0.0286210i \(-0.00911160\pi\)
\(822\) 0 0
\(823\) − 43.7219i − 1.52405i −0.647549 0.762024i \(-0.724206\pi\)
0.647549 0.762024i \(-0.275794\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.2651 1.12197 0.560983 0.827827i \(-0.310423\pi\)
0.560983 + 0.827827i \(0.310423\pi\)
\(828\) 0 0
\(829\) 6.83658i 0.237444i 0.992928 + 0.118722i \(0.0378798\pi\)
−0.992928 + 0.118722i \(0.962120\pi\)
\(830\) 0 0
\(831\) −17.4589 −0.605642
\(832\) 0 0
\(833\) − 14.2003i − 0.492011i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −40.3854 −1.39592
\(838\) 0 0
\(839\) 12.3983 0.428037 0.214018 0.976830i \(-0.431345\pi\)
0.214018 + 0.976830i \(0.431345\pi\)
\(840\) 0 0
\(841\) −1.56388 −0.0539268
\(842\) 0 0
\(843\) 32.2804 1.11180
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 42.8849i − 1.47354i
\(848\) 0 0
\(849\) −28.1243 −0.965224
\(850\) 0 0
\(851\) − 26.8912i − 0.921818i
\(852\) 0 0
\(853\) 10.2780 0.351911 0.175955 0.984398i \(-0.443699\pi\)
0.175955 + 0.984398i \(0.443699\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.1493i 0.380852i 0.981702 + 0.190426i \(0.0609870\pi\)
−0.981702 + 0.190426i \(0.939013\pi\)
\(858\) 0 0
\(859\) 30.3826i 1.03664i 0.855186 + 0.518321i \(0.173443\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(860\) 0 0
\(861\) 9.10692i 0.310363i
\(862\) 0 0
\(863\) 46.2899i 1.57573i 0.615851 + 0.787863i \(0.288812\pi\)
−0.615851 + 0.787863i \(0.711188\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −17.8696 −0.606885
\(868\) 0 0
\(869\) − 9.49750i − 0.322181i
\(870\) 0 0
\(871\) 32.0996 1.08765
\(872\) 0 0
\(873\) 0.370715i 0.0125468i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.8781 1.34659 0.673293 0.739376i \(-0.264879\pi\)
0.673293 + 0.739376i \(0.264879\pi\)
\(878\) 0 0
\(879\) 5.84872 0.197273
\(880\) 0 0
\(881\) 38.6037 1.30059 0.650297 0.759680i \(-0.274645\pi\)
0.650297 + 0.759680i \(0.274645\pi\)
\(882\) 0 0
\(883\) −57.2207 −1.92563 −0.962814 0.270164i \(-0.912922\pi\)
−0.962814 + 0.270164i \(0.912922\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.8099i 0.396537i 0.980148 + 0.198269i \(0.0635319\pi\)
−0.980148 + 0.198269i \(0.936468\pi\)
\(888\) 0 0
\(889\) 15.5355 0.521045
\(890\) 0 0
\(891\) 65.8224i 2.20513i
\(892\) 0 0
\(893\) 43.6201 1.45969
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.3512i 0.679508i
\(898\) 0 0
\(899\) − 46.2246i − 1.54168i
\(900\) 0 0
\(901\) 0.125110i 0.00416803i
\(902\) 0 0
\(903\) 7.43561i 0.247441i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −36.7370 −1.21983 −0.609917 0.792466i \(-0.708797\pi\)
−0.609917 + 0.792466i \(0.708797\pi\)
\(908\) 0 0
\(909\) − 0.921071i − 0.0305500i
\(910\) 0 0
\(911\) 16.4318 0.544409 0.272205 0.962239i \(-0.412247\pi\)
0.272205 + 0.962239i \(0.412247\pi\)
\(912\) 0 0
\(913\) 86.0205i 2.84686i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.6738 0.550618
\(918\) 0 0
\(919\) −30.9480 −1.02088 −0.510440 0.859913i \(-0.670518\pi\)
−0.510440 + 0.859913i \(0.670518\pi\)
\(920\) 0 0
\(921\) 51.4916 1.69671
\(922\) 0 0
\(923\) −27.7610 −0.913764
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 1.96727i − 0.0646136i
\(928\) 0 0
\(929\) −11.4537 −0.375784 −0.187892 0.982190i \(-0.560165\pi\)
−0.187892 + 0.982190i \(0.560165\pi\)
\(930\) 0 0
\(931\) − 26.1880i − 0.858278i
\(932\) 0 0
\(933\) 51.0147 1.67015
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.7274i 0.971151i 0.874195 + 0.485575i \(0.161390\pi\)
−0.874195 + 0.485575i \(0.838610\pi\)
\(938\) 0 0
\(939\) 39.7228i 1.29630i
\(940\) 0 0
\(941\) − 22.9601i − 0.748477i −0.927332 0.374239i \(-0.877904\pi\)
0.927332 0.374239i \(-0.122096\pi\)
\(942\) 0 0
\(943\) 14.0963i 0.459039i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35.4333 −1.15143 −0.575714 0.817651i \(-0.695276\pi\)
−0.575714 + 0.817651i \(0.695276\pi\)
\(948\) 0 0
\(949\) − 36.8337i − 1.19567i
\(950\) 0 0
\(951\) 29.3699 0.952385
\(952\) 0 0
\(953\) 1.35496i 0.0438914i 0.999759 + 0.0219457i \(0.00698610\pi\)
−0.999759 + 0.0219457i \(0.993014\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −66.9924 −2.16556
\(958\) 0 0
\(959\) −5.70413 −0.184196
\(960\) 0 0
\(961\) 38.9099 1.25516
\(962\) 0 0
\(963\) 0.357722 0.0115274
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 19.6245i − 0.631080i −0.948912 0.315540i \(-0.897814\pi\)
0.948912 0.315540i \(-0.102186\pi\)
\(968\) 0 0
\(969\) 24.5826 0.789706
\(970\) 0 0
\(971\) − 1.55749i − 0.0499822i −0.999688 0.0249911i \(-0.992044\pi\)
0.999688 0.0249911i \(-0.00795575\pi\)
\(972\) 0 0
\(973\) 4.58884 0.147112
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 49.4288i − 1.58137i −0.612226 0.790683i \(-0.709726\pi\)
0.612226 0.790683i \(-0.290274\pi\)
\(978\) 0 0
\(979\) 26.0270i 0.831825i
\(980\) 0 0
\(981\) − 6.93833i − 0.221524i
\(982\) 0 0
\(983\) 18.1091i 0.577591i 0.957391 + 0.288795i \(0.0932547\pi\)
−0.957391 + 0.288795i \(0.906745\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 21.1911 0.674521
\(988\) 0 0
\(989\) 11.5093i 0.365976i
\(990\) 0 0
\(991\) −4.82935 −0.153409 −0.0767046 0.997054i \(-0.524440\pi\)
−0.0767046 + 0.997054i \(0.524440\pi\)
\(992\) 0 0
\(993\) − 9.90905i − 0.314454i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −18.3807 −0.582122 −0.291061 0.956705i \(-0.594008\pi\)
−0.291061 + 0.956705i \(0.594008\pi\)
\(998\) 0 0
\(999\) 34.7533 1.09955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.f.c.3249.6 20
4.3 odd 2 1000.2.f.c.749.2 20
5.2 odd 4 4000.2.d.c.2001.26 40
5.3 odd 4 4000.2.d.c.2001.15 40
5.4 even 2 4000.2.f.d.3249.15 20
8.3 odd 2 1000.2.f.d.749.20 20
8.5 even 2 4000.2.f.d.3249.16 20
20.3 even 4 1000.2.d.c.501.24 yes 40
20.7 even 4 1000.2.d.c.501.17 40
20.19 odd 2 1000.2.f.d.749.19 20
40.3 even 4 1000.2.d.c.501.23 yes 40
40.13 odd 4 4000.2.d.c.2001.16 40
40.19 odd 2 1000.2.f.c.749.1 20
40.27 even 4 1000.2.d.c.501.18 yes 40
40.29 even 2 inner 4000.2.f.c.3249.5 20
40.37 odd 4 4000.2.d.c.2001.25 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.17 40 20.7 even 4
1000.2.d.c.501.18 yes 40 40.27 even 4
1000.2.d.c.501.23 yes 40 40.3 even 4
1000.2.d.c.501.24 yes 40 20.3 even 4
1000.2.f.c.749.1 20 40.19 odd 2
1000.2.f.c.749.2 20 4.3 odd 2
1000.2.f.d.749.19 20 20.19 odd 2
1000.2.f.d.749.20 20 8.3 odd 2
4000.2.d.c.2001.15 40 5.3 odd 4
4000.2.d.c.2001.16 40 40.13 odd 4
4000.2.d.c.2001.25 40 40.37 odd 4
4000.2.d.c.2001.26 40 5.2 odd 4
4000.2.f.c.3249.5 20 40.29 even 2 inner
4000.2.f.c.3249.6 20 1.1 even 1 trivial
4000.2.f.d.3249.15 20 5.4 even 2
4000.2.f.d.3249.16 20 8.5 even 2