Properties

Label 2-10e4-1.1-c1-0-67
Degree $2$
Conductor $10000$
Sign $1$
Analytic cond. $79.8504$
Root an. cond. $8.93590$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.631·3-s + 2.09·7-s − 2.60·9-s + 5.36·11-s − 5.07·13-s − 5.87·17-s + 6.18·19-s + 1.32·21-s − 3.55·23-s − 3.53·27-s + 0.899·29-s + 10.0·31-s + 3.39·33-s − 3.41·37-s − 3.20·39-s + 5.42·41-s + 2.70·43-s − 1.71·47-s − 2.61·49-s − 3.71·51-s + 8.89·53-s + 3.91·57-s − 4.46·59-s − 4.93·61-s − 5.44·63-s − 3.83·67-s − 2.24·69-s + ⋯
L(s)  = 1  + 0.364·3-s + 0.791·7-s − 0.866·9-s + 1.61·11-s − 1.40·13-s − 1.42·17-s + 1.41·19-s + 0.288·21-s − 0.740·23-s − 0.681·27-s + 0.167·29-s + 1.79·31-s + 0.590·33-s − 0.561·37-s − 0.513·39-s + 0.847·41-s + 0.411·43-s − 0.249·47-s − 0.373·49-s − 0.519·51-s + 1.22·53-s + 0.517·57-s − 0.581·59-s − 0.632·61-s − 0.686·63-s − 0.467·67-s − 0.270·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10000\)    =    \(2^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(79.8504\)
Root analytic conductor: \(8.93590\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.421945736\)
\(L(\frac12)\) \(\approx\) \(2.421945736\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 0.631T + 3T^{2} \)
7 \( 1 - 2.09T + 7T^{2} \)
11 \( 1 - 5.36T + 11T^{2} \)
13 \( 1 + 5.07T + 13T^{2} \)
17 \( 1 + 5.87T + 17T^{2} \)
19 \( 1 - 6.18T + 19T^{2} \)
23 \( 1 + 3.55T + 23T^{2} \)
29 \( 1 - 0.899T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 + 3.41T + 37T^{2} \)
41 \( 1 - 5.42T + 41T^{2} \)
43 \( 1 - 2.70T + 43T^{2} \)
47 \( 1 + 1.71T + 47T^{2} \)
53 \( 1 - 8.89T + 53T^{2} \)
59 \( 1 + 4.46T + 59T^{2} \)
61 \( 1 + 4.93T + 61T^{2} \)
67 \( 1 + 3.83T + 67T^{2} \)
71 \( 1 - 4.09T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 - 1.55T + 79T^{2} \)
83 \( 1 + 1.21T + 83T^{2} \)
89 \( 1 - 7.01T + 89T^{2} \)
97 \( 1 + 3.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73711098728792508759095309981, −6.98645801783839163520824961765, −6.38011757294539922664197175229, −5.60083725999712588626059348430, −4.75217986249406732689128800643, −4.31036895471745338174620177886, −3.35699794006199502129083671183, −2.53039299239388134084178142179, −1.84395352354450381744106917490, −0.72081518097009149509125777026, 0.72081518097009149509125777026, 1.84395352354450381744106917490, 2.53039299239388134084178142179, 3.35699794006199502129083671183, 4.31036895471745338174620177886, 4.75217986249406732689128800643, 5.60083725999712588626059348430, 6.38011757294539922664197175229, 6.98645801783839163520824961765, 7.73711098728792508759095309981

Graph of the $Z$-function along the critical line