Properties

Label 10000.2.a.bq
Level 1000010000
Weight 22
Character orbit 10000.a
Self dual yes
Analytic conductor 79.85079.850
Analytic rank 00
Dimension 1616
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10000,2,Mod(1,10000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 10000=2454 10000 = 2^{4} \cdot 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 10000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 79.850402021379.8504020213
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x1526x14+110x13+250x121154x111074x10+5784x9++80 x^{16} - 4 x^{15} - 26 x^{14} + 110 x^{13} + 250 x^{12} - 1154 x^{11} - 1074 x^{10} + 5784 x^{9} + \cdots + 80 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 53 5^{3}
Twist minimal: no (minimal twist has level 200)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β81)q7+(β2+1)q9+(β5+1)q11+(β11+β10+β9++1)q13+(β12+β8+β1)q17++(β14+2β13++3)q99+O(q100) q - \beta_1 q^{3} + (\beta_{8} - 1) q^{7} + (\beta_{2} + 1) q^{9} + (\beta_{5} + 1) q^{11} + ( - \beta_{11} + \beta_{10} + \beta_{9} + \cdots + 1) q^{13} + ( - \beta_{12} + \beta_{8} + \cdots - \beta_1) q^{17}+ \cdots + ( - \beta_{14} + 2 \beta_{13} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q38q7+20q9+12q11+10q13+8q17+12q19+8q2112q2322q27+16q29+2q31+24q33+22q37+4q39+20q4126q4324q47++46q99+O(q100) 16 q - 4 q^{3} - 8 q^{7} + 20 q^{9} + 12 q^{11} + 10 q^{13} + 8 q^{17} + 12 q^{19} + 8 q^{21} - 12 q^{23} - 22 q^{27} + 16 q^{29} + 2 q^{31} + 24 q^{33} + 22 q^{37} + 4 q^{39} + 20 q^{41} - 26 q^{43} - 24 q^{47}+ \cdots + 46 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x164x1526x14+110x13+250x121154x111074x10+5784x9++80 x^{16} - 4 x^{15} - 26 x^{14} + 110 x^{13} + 250 x^{12} - 1154 x^{11} - 1074 x^{10} + 5784 x^{9} + \cdots + 80 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== (177ν156961ν14+34464ν13+147458ν121048624ν11886366ν10++2503340)/624200 ( 177 \nu^{15} - 6961 \nu^{14} + 34464 \nu^{13} + 147458 \nu^{12} - 1048624 \nu^{11} - 886366 \nu^{10} + \cdots + 2503340 ) / 624200 Copy content Toggle raw display
β4\beta_{4}== (3320ν15+7068ν14+106035ν13192200ν121354885ν11++651760)/312100 ( - 3320 \nu^{15} + 7068 \nu^{14} + 106035 \nu^{13} - 192200 \nu^{12} - 1354885 \nu^{11} + \cdots + 651760 ) / 312100 Copy content Toggle raw display
β5\beta_{5}== (16083ν1540628ν14491454ν13+1092422ν12+6003374ν11+5172720)/624200 ( 16083 \nu^{15} - 40628 \nu^{14} - 491454 \nu^{13} + 1092422 \nu^{12} + 6003374 \nu^{11} + \cdots - 5172720 ) / 624200 Copy content Toggle raw display
β6\beta_{6}== (8147ν1529268ν14218890ν13+790135ν12+2228950ν11+799260)/312100 ( 8147 \nu^{15} - 29268 \nu^{14} - 218890 \nu^{13} + 790135 \nu^{12} + 2228950 \nu^{11} + \cdots - 799260 ) / 312100 Copy content Toggle raw display
β7\beta_{7}== (34985ν15+160082ν14+828954ν134334162ν126655254ν11+11782400)/1248400 ( - 34985 \nu^{15} + 160082 \nu^{14} + 828954 \nu^{13} - 4334162 \nu^{12} - 6655254 \nu^{11} + \cdots - 11782400 ) / 1248400 Copy content Toggle raw display
β8\beta_{8}== (9952ν15+47268ν14+222753ν131261704ν121520633ν11+1490220)/312100 ( - 9952 \nu^{15} + 47268 \nu^{14} + 222753 \nu^{13} - 1261704 \nu^{12} - 1520633 \nu^{11} + \cdots - 1490220 ) / 312100 Copy content Toggle raw display
β9\beta_{9}== (19853ν15110886ν14371328ν13+2921034ν12+1061908ν11++5150560)/624200 ( 19853 \nu^{15} - 110886 \nu^{14} - 371328 \nu^{13} + 2921034 \nu^{12} + 1061908 \nu^{11} + \cdots + 5150560 ) / 624200 Copy content Toggle raw display
β10\beta_{10}== (45159ν15+195662ν14+1091690ν135247810ν129150790ν11++1927440)/1248400 ( - 45159 \nu^{15} + 195662 \nu^{14} + 1091690 \nu^{13} - 5247810 \nu^{12} - 9150790 \nu^{11} + \cdots + 1927440 ) / 1248400 Copy content Toggle raw display
β11\beta_{11}== (48227ν15237254ν141043610ν13+6309830ν12+6421510ν11++13166720)/1248400 ( 48227 \nu^{15} - 237254 \nu^{14} - 1043610 \nu^{13} + 6309830 \nu^{12} + 6421510 \nu^{11} + \cdots + 13166720 ) / 1248400 Copy content Toggle raw display
β12\beta_{12}== (17507ν15+57768ν14+498354ν131586982ν125557734ν11++1137920)/312100 ( - 17507 \nu^{15} + 57768 \nu^{14} + 498354 \nu^{13} - 1586982 \nu^{12} - 5557734 \nu^{11} + \cdots + 1137920 ) / 312100 Copy content Toggle raw display
β13\beta_{13}== (70841ν15+216442ν14+2080246ν135960498ν1224203026ν11++10337280)/1248400 ( - 70841 \nu^{15} + 216442 \nu^{14} + 2080246 \nu^{13} - 5960498 \nu^{12} - 24203026 \nu^{11} + \cdots + 10337280 ) / 1248400 Copy content Toggle raw display
β14\beta_{14}== (47457ν15+211662ν14+1129108ν135692644ν129103068ν11+4435440)/624200 ( - 47457 \nu^{15} + 211662 \nu^{14} + 1129108 \nu^{13} - 5692644 \nu^{12} - 9103068 \nu^{11} + \cdots - 4435440 ) / 624200 Copy content Toggle raw display
β15\beta_{15}== (29696ν15104425ν14808595ν13+2827855ν12+8411315ν11+2334800)/312100 ( 29696 \nu^{15} - 104425 \nu^{14} - 808595 \nu^{13} + 2827855 \nu^{12} + 8411315 \nu^{11} + \cdots - 2334800 ) / 312100 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β14β13+β12β8β7+β6+β4+β2+7β1+2 \beta_{14} - \beta_{13} + \beta_{12} - \beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{2} + 7\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== β15+β14+β12+β11+β10β9β82β7++29 \beta_{15} + \beta_{14} + \beta_{12} + \beta_{11} + \beta_{10} - \beta_{9} - \beta_{8} - 2 \beta_{7} + \cdots + 29 Copy content Toggle raw display
ν5\nu^{5}== 10β1413β13+12β12+3β11β97β810β7++24 10 \beta_{14} - 13 \beta_{13} + 12 \beta_{12} + 3 \beta_{11} - \beta_{9} - 7 \beta_{8} - 10 \beta_{7} + \cdots + 24 Copy content Toggle raw display
ν6\nu^{6}== 18β15+15β14β13+17β12+18β11+12β1019β9++239 18 \beta_{15} + 15 \beta_{14} - \beta_{13} + 17 \beta_{12} + 18 \beta_{11} + 12 \beta_{10} - 19 \beta_{9} + \cdots + 239 Copy content Toggle raw display
ν7\nu^{7}== 8β15+90β14140β13+128β12+54β11+2β10++258 8 \beta_{15} + 90 \beta_{14} - 140 \beta_{13} + 128 \beta_{12} + 54 \beta_{11} + 2 \beta_{10} + \cdots + 258 Copy content Toggle raw display
ν8\nu^{8}== 238β15+178β1436β13+214β12+256β11+114β10++2068 238 \beta_{15} + 178 \beta_{14} - 36 \beta_{13} + 214 \beta_{12} + 256 \beta_{11} + 114 \beta_{10} + \cdots + 2068 Copy content Toggle raw display
ν9\nu^{9}== 212β15+817β141431β13+1323β12+754β11+56β10++2674 212 \beta_{15} + 817 \beta_{14} - 1431 \beta_{13} + 1323 \beta_{12} + 754 \beta_{11} + 56 \beta_{10} + \cdots + 2674 Copy content Toggle raw display
ν10\nu^{10}== 2885β15+1975β14708β13+2471β12+3295β11+1033β10++18415 2885 \beta_{15} + 1975 \beta_{14} - 708 \beta_{13} + 2471 \beta_{12} + 3295 \beta_{11} + 1033 \beta_{10} + \cdots + 18415 Copy content Toggle raw display
ν11\nu^{11}== 3776β15+7650β1414421β13+13548β12+9679β11+960β10++27222 3776 \beta_{15} + 7650 \beta_{14} - 14421 \beta_{13} + 13548 \beta_{12} + 9679 \beta_{11} + 960 \beta_{10} + \cdots + 27222 Copy content Toggle raw display
ν12\nu^{12}== 33886β15+21335β1410963β13+27629β12+40274β11++167249 33886 \beta_{15} + 21335 \beta_{14} - 10963 \beta_{13} + 27629 \beta_{12} + 40274 \beta_{11} + \cdots + 167249 Copy content Toggle raw display
ν13\nu^{13}== 56916β15+74056β14145338β13+138764β12+119414β11++274612 56916 \beta_{15} + 74056 \beta_{14} - 145338 \beta_{13} + 138764 \beta_{12} + 119414 \beta_{11} + \cdots + 274612 Copy content Toggle raw display
ν14\nu^{14}== 392784β15+227784β14150324β13+304908β12+478292β11++1541960 392784 \beta_{15} + 227784 \beta_{14} - 150324 \beta_{13} + 304908 \beta_{12} + 478292 \beta_{11} + \cdots + 1541960 Copy content Toggle raw display
ν15\nu^{15}== 784500β15+738565β141473625β13+1428221β12+1439528β11++2758914 784500 \beta_{15} + 738565 \beta_{14} - 1473625 \beta_{13} + 1428221 \beta_{12} + 1439528 \beta_{11} + \cdots + 2758914 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.36926
3.07129
2.93924
2.30769
1.62428
1.56513
0.720900
0.686530
−0.0595607
−0.631998
−0.764364
−0.853232
−2.02783
−2.24082
−2.71029
−2.99623
0 −3.36926 0 0 0 −0.794375 0 8.35194 0
1.2 0 −3.07129 0 0 0 −4.49756 0 6.43283 0
1.3 0 −2.93924 0 0 0 3.13612 0 5.63915 0
1.4 0 −2.30769 0 0 0 −4.74404 0 2.32542 0
1.5 0 −1.62428 0 0 0 −2.51754 0 −0.361706 0
1.6 0 −1.56513 0 0 0 −0.0338937 0 −0.550359 0
1.7 0 −0.720900 0 0 0 4.42421 0 −2.48030 0
1.8 0 −0.686530 0 0 0 3.54998 0 −2.52868 0
1.9 0 0.0595607 0 0 0 −1.71675 0 −2.99645 0
1.10 0 0.631998 0 0 0 2.09441 0 −2.60058 0
1.11 0 0.764364 0 0 0 −4.32704 0 −2.41575 0
1.12 0 0.853232 0 0 0 −1.47738 0 −2.27199 0
1.13 0 2.02783 0 0 0 0.498275 0 1.11208 0
1.14 0 2.24082 0 0 0 1.85909 0 2.02129 0
1.15 0 2.71029 0 0 0 0.760910 0 4.34569 0
1.16 0 2.99623 0 0 0 −4.21442 0 5.97742 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10000.2.a.bq 16
4.b odd 2 1 5000.2.a.r 16
5.b even 2 1 10000.2.a.br 16
20.d odd 2 1 5000.2.a.q 16
25.f odd 20 2 400.2.y.d 32
100.h odd 10 2 1000.2.m.e 32
100.j odd 10 2 1000.2.m.d 32
100.l even 20 2 200.2.q.a 32
100.l even 20 2 1000.2.q.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.q.a 32 100.l even 20 2
400.2.y.d 32 25.f odd 20 2
1000.2.m.d 32 100.j odd 10 2
1000.2.m.e 32 100.h odd 10 2
1000.2.q.c 32 100.l even 20 2
5000.2.a.q 16 20.d odd 2 1
5000.2.a.r 16 4.b odd 2 1
10000.2.a.bq 16 1.a even 1 1 trivial
10000.2.a.br 16 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(10000))S_{2}^{\mathrm{new}}(\Gamma_0(10000)):

T316+4T31526T314110T313+250T312+1154T311++80 T_{3}^{16} + 4 T_{3}^{15} - 26 T_{3}^{14} - 110 T_{3}^{13} + 250 T_{3}^{12} + 1154 T_{3}^{11} + \cdots + 80 Copy content Toggle raw display
T716+8T71539T714416T713+376T712+8084T711+4864 T_{7}^{16} + 8 T_{7}^{15} - 39 T_{7}^{14} - 416 T_{7}^{13} + 376 T_{7}^{12} + 8084 T_{7}^{11} + \cdots - 4864 Copy content Toggle raw display
T111612T111531T1114+794T1113756T111218090T1111+112384 T_{11}^{16} - 12 T_{11}^{15} - 31 T_{11}^{14} + 794 T_{11}^{13} - 756 T_{11}^{12} - 18090 T_{11}^{11} + \cdots - 112384 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16+4T15++80 T^{16} + 4 T^{15} + \cdots + 80 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T16+8T15+4864 T^{16} + 8 T^{15} + \cdots - 4864 Copy content Toggle raw display
1111 T1612T15+112384 T^{16} - 12 T^{15} + \cdots - 112384 Copy content Toggle raw display
1313 T1610T15+9030899 T^{16} - 10 T^{15} + \cdots - 9030899 Copy content Toggle raw display
1717 T168T15++6010000 T^{16} - 8 T^{15} + \cdots + 6010000 Copy content Toggle raw display
1919 T1612T15++2808976 T^{16} - 12 T^{15} + \cdots + 2808976 Copy content Toggle raw display
2323 T16++6486139136 T^{16} + \cdots + 6486139136 Copy content Toggle raw display
2929 T1616T15++35290081 T^{16} - 16 T^{15} + \cdots + 35290081 Copy content Toggle raw display
3131 T16++2080762000 T^{16} + \cdots + 2080762000 Copy content Toggle raw display
3737 T16++421220021 T^{16} + \cdots + 421220021 Copy content Toggle raw display
4141 T16++48434041616 T^{16} + \cdots + 48434041616 Copy content Toggle raw display
4343 T16+26T15++10244096 T^{16} + 26 T^{15} + \cdots + 10244096 Copy content Toggle raw display
4747 T16+2949551104 T^{16} + \cdots - 2949551104 Copy content Toggle raw display
5353 T1616T15++91170496 T^{16} - 16 T^{15} + \cdots + 91170496 Copy content Toggle raw display
5959 T16+2071241191424 T^{16} + \cdots - 2071241191424 Copy content Toggle raw display
6161 T16+57875079875 T^{16} + \cdots - 57875079875 Copy content Toggle raw display
6767 T16++10874045696 T^{16} + \cdots + 10874045696 Copy content Toggle raw display
7171 T16+17821854244720 T^{16} + \cdots - 17821854244720 Copy content Toggle raw display
7373 T16++467056954256 T^{16} + \cdots + 467056954256 Copy content Toggle raw display
7979 T16+39769573120 T^{16} + \cdots - 39769573120 Copy content Toggle raw display
8383 T16+5160481904 T^{16} + \cdots - 5160481904 Copy content Toggle raw display
8989 T16+47559207352064 T^{16} + \cdots - 47559207352064 Copy content Toggle raw display
9797 T16+42316001699 T^{16} + \cdots - 42316001699 Copy content Toggle raw display
show more
show less