[N,k,chi] = [10000,2,Mod(1,10000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(10000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("10000.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 10000 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(10000)) S 2 n e w ( Γ 0 ( 1 0 0 0 0 ) ) :
T 3 16 + 4 T 3 15 − 26 T 3 14 − 110 T 3 13 + 250 T 3 12 + 1154 T 3 11 + ⋯ + 80 T_{3}^{16} + 4 T_{3}^{15} - 26 T_{3}^{14} - 110 T_{3}^{13} + 250 T_{3}^{12} + 1154 T_{3}^{11} + \cdots + 80 T 3 1 6 + 4 T 3 1 5 − 2 6 T 3 1 4 − 1 1 0 T 3 1 3 + 2 5 0 T 3 1 2 + 1 1 5 4 T 3 1 1 + ⋯ + 8 0
T3^16 + 4*T3^15 - 26*T3^14 - 110*T3^13 + 250*T3^12 + 1154*T3^11 - 1074*T3^10 - 5784*T3^9 + 1890*T3^8 + 14210*T3^7 - 726*T3^6 - 15974*T3^5 + 61*T3^4 + 7820*T3^3 - 180*T3^2 - 1360*T3 + 80
T 7 16 + 8 T 7 15 − 39 T 7 14 − 416 T 7 13 + 376 T 7 12 + 8084 T 7 11 + ⋯ − 4864 T_{7}^{16} + 8 T_{7}^{15} - 39 T_{7}^{14} - 416 T_{7}^{13} + 376 T_{7}^{12} + 8084 T_{7}^{11} + \cdots - 4864 T 7 1 6 + 8 T 7 1 5 − 3 9 T 7 1 4 − 4 1 6 T 7 1 3 + 3 7 6 T 7 1 2 + 8 0 8 4 T 7 1 1 + ⋯ − 4 8 6 4
T7^16 + 8*T7^15 - 39*T7^14 - 416*T7^13 + 376*T7^12 + 8084*T7^11 + 2001*T7^10 - 73936*T7^9 - 49339*T7^8 + 328084*T7^7 + 254484*T7^6 - 666512*T7^5 - 471616*T7^4 + 518336*T7^3 + 211264*T7^2 - 136960*T7 - 4864
T 11 16 − 12 T 11 15 − 31 T 11 14 + 794 T 11 13 − 756 T 11 12 − 18090 T 11 11 + ⋯ − 112384 T_{11}^{16} - 12 T_{11}^{15} - 31 T_{11}^{14} + 794 T_{11}^{13} - 756 T_{11}^{12} - 18090 T_{11}^{11} + \cdots - 112384 T 1 1 1 6 − 1 2 T 1 1 1 5 − 3 1 T 1 1 1 4 + 7 9 4 T 1 1 1 3 − 7 5 6 T 1 1 1 2 − 1 8 0 9 0 T 1 1 1 1 + ⋯ − 1 1 2 3 8 4
T11^16 - 12*T11^15 - 31*T11^14 + 794*T11^13 - 756*T11^12 - 18090*T11^11 + 30797*T11^10 + 201148*T11^9 - 313887*T11^8 - 1295072*T11^7 + 1146112*T11^6 + 4721600*T11^5 - 110496*T11^4 - 7072256*T11^3 - 5263616*T11^2 - 1359872*T11 - 112384
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 + 4 T 15 + ⋯ + 80 T^{16} + 4 T^{15} + \cdots + 80 T 1 6 + 4 T 1 5 + ⋯ + 8 0
T^16 + 4*T^15 - 26*T^14 - 110*T^13 + 250*T^12 + 1154*T^11 - 1074*T^10 - 5784*T^9 + 1890*T^8 + 14210*T^7 - 726*T^6 - 15974*T^5 + 61*T^4 + 7820*T^3 - 180*T^2 - 1360*T + 80
5 5 5
T 16 T^{16} T 1 6
T^16
7 7 7
T 16 + 8 T 15 + ⋯ − 4864 T^{16} + 8 T^{15} + \cdots - 4864 T 1 6 + 8 T 1 5 + ⋯ − 4 8 6 4
T^16 + 8*T^15 - 39*T^14 - 416*T^13 + 376*T^12 + 8084*T^11 + 2001*T^10 - 73936*T^9 - 49339*T^8 + 328084*T^7 + 254484*T^6 - 666512*T^5 - 471616*T^4 + 518336*T^3 + 211264*T^2 - 136960*T - 4864
11 11 1 1
T 16 − 12 T 15 + ⋯ − 112384 T^{16} - 12 T^{15} + \cdots - 112384 T 1 6 − 1 2 T 1 5 + ⋯ − 1 1 2 3 8 4
T^16 - 12*T^15 - 31*T^14 + 794*T^13 - 756*T^12 - 18090*T^11 + 30797*T^10 + 201148*T^9 - 313887*T^8 - 1295072*T^7 + 1146112*T^6 + 4721600*T^5 - 110496*T^4 - 7072256*T^3 - 5263616*T^2 - 1359872*T - 112384
13 13 1 3
T 16 − 10 T 15 + ⋯ − 9030899 T^{16} - 10 T^{15} + \cdots - 9030899 T 1 6 − 1 0 T 1 5 + ⋯ − 9 0 3 0 8 9 9
T^16 - 10*T^15 - 69*T^14 + 948*T^13 + 789*T^12 - 32134*T^11 + 31266*T^10 + 498422*T^9 - 839634*T^8 - 3840022*T^7 + 7398634*T^6 + 14322102*T^5 - 25984359*T^4 - 22084732*T^3 + 27705339*T^2 + 10386994*T - 9030899
17 17 1 7
T 16 − 8 T 15 + ⋯ + 6010000 T^{16} - 8 T^{15} + \cdots + 6010000 T 1 6 − 8 T 1 5 + ⋯ + 6 0 1 0 0 0 0
T^16 - 8*T^15 - 131*T^14 + 1188*T^13 + 5586*T^12 - 63960*T^11 - 77235*T^10 + 1589020*T^9 - 418830*T^8 - 18886200*T^7 + 16005225*T^6 + 100396100*T^5 - 78428475*T^4 - 197563000*T^3 - 15218500*T^2 + 48960000*T + 6010000
19 19 1 9
T 16 − 12 T 15 + ⋯ + 2808976 T^{16} - 12 T^{15} + \cdots + 2808976 T 1 6 − 1 2 T 1 5 + ⋯ + 2 8 0 8 9 7 6
T^16 - 12*T^15 - 101*T^14 + 1694*T^13 + 1594*T^12 - 89720*T^11 + 152467*T^10 + 2147458*T^9 - 7288022*T^8 - 19883152*T^7 + 116811047*T^6 - 29456570*T^5 - 616290291*T^4 + 1059821384*T^3 - 316350596*T^2 - 284973632*T + 2808976
23 23 2 3
T 16 + ⋯ + 6486139136 T^{16} + \cdots + 6486139136 T 1 6 + ⋯ + 6 4 8 6 1 3 9 1 3 6
T^16 + 12*T^15 - 149*T^14 - 2004*T^13 + 8651*T^12 + 131036*T^11 - 275914*T^10 - 4335444*T^9 + 6130351*T^8 + 77947936*T^7 - 98619081*T^6 - 745187688*T^5 + 937157309*T^4 + 3460786664*T^3 - 4176098976*T^2 - 6153971840*T + 6486139136
29 29 2 9
T 16 − 16 T 15 + ⋯ + 35290081 T^{16} - 16 T^{15} + \cdots + 35290081 T 1 6 − 1 6 T 1 5 + ⋯ + 3 5 2 9 0 0 8 1
T^16 - 16*T^15 - 69*T^14 + 2178*T^13 - 3051*T^12 - 103590*T^11 + 370318*T^10 + 1919386*T^9 - 10566762*T^8 - 6634746*T^7 + 103070078*T^6 - 114781450*T^5 - 175590171*T^4 + 325618662*T^3 - 39346429*T^2 - 117442904*T + 35290081
31 31 3 1
T 16 + ⋯ + 2080762000 T^{16} + \cdots + 2080762000 T 1 6 + ⋯ + 2 0 8 0 7 6 2 0 0 0
T^16 - 2*T^15 - 241*T^14 + 562*T^13 + 21831*T^12 - 66040*T^11 - 921330*T^10 + 3755160*T^9 + 16598575*T^8 - 101567550*T^7 - 21148125*T^6 + 1049512550*T^5 - 2163357375*T^4 + 109261000*T^3 + 4584827000*T^2 - 5546968000*T + 2080762000
37 37 3 7
T 16 + ⋯ + 421220021 T^{16} + \cdots + 421220021 T 1 6 + ⋯ + 4 2 1 2 2 0 0 2 1
T^16 - 22*T^15 - 11*T^14 + 3284*T^13 - 17991*T^12 - 98360*T^11 + 848902*T^10 + 1097628*T^9 - 15757282*T^8 - 6661432*T^7 + 142379102*T^6 + 63510920*T^5 - 606143211*T^4 - 508201966*T^3 + 867909209*T^2 + 1255079188*T + 421220021
41 41 4 1
T 16 + ⋯ + 48434041616 T^{16} + \cdots + 48434041616 T 1 6 + ⋯ + 4 8 4 3 4 0 4 1 6 1 6
T^16 - 20*T^15 - 116*T^14 + 4716*T^13 - 11516*T^12 - 378692*T^11 + 2300234*T^10 + 10593764*T^9 - 119337844*T^8 + 55801684*T^7 + 2265327436*T^6 - 6229072796*T^5 - 9045582139*T^4 + 54361060624*T^3 - 40930758904*T^2 - 56552398912*T + 48434041616
43 43 4 3
T 16 + 26 T 15 + ⋯ + 10244096 T^{16} + 26 T^{15} + \cdots + 10244096 T 1 6 + 2 6 T 1 5 + ⋯ + 1 0 2 4 4 0 9 6
T^16 + 26*T^15 + 89*T^14 - 2848*T^13 - 23884*T^12 + 70848*T^11 + 1263969*T^10 + 1490382*T^9 - 23114659*T^8 - 70707152*T^7 + 101879016*T^6 + 613653184*T^5 + 306996304*T^4 - 1364579968*T^3 - 1796408064*T^2 - 521891840*T + 10244096
47 47 4 7
T 16 + ⋯ − 2949551104 T^{16} + \cdots - 2949551104 T 1 6 + ⋯ − 2 9 4 9 5 5 1 1 0 4
T^16 + 24*T^15 - 100*T^14 - 6100*T^13 - 19880*T^12 + 498932*T^11 + 2987098*T^10 - 14266400*T^9 - 116214500*T^8 + 142576460*T^7 + 1762475608*T^6 - 279072268*T^5 - 11200440375*T^4 - 3143549400*T^3 + 24625685920*T^2 + 14478883584*T - 2949551104
53 53 5 3
T 16 − 16 T 15 + ⋯ + 91170496 T^{16} - 16 T^{15} + \cdots + 91170496 T 1 6 − 1 6 T 1 5 + ⋯ + 9 1 1 7 0 4 9 6
T^16 - 16*T^15 - 200*T^14 + 3960*T^13 + 8160*T^12 - 287228*T^11 - 181322*T^10 + 9372700*T^9 + 9225280*T^8 - 131297720*T^7 - 244260672*T^6 + 302059092*T^5 + 589505125*T^4 - 230774740*T^3 - 440028440*T^2 + 57533024*T + 91170496
59 59 5 9
T 16 + ⋯ − 2071241191424 T^{16} + \cdots - 2071241191424 T 1 6 + ⋯ − 2 0 7 1 2 4 1 1 9 1 4 2 4
T^16 - 40*T^15 + 414*T^14 + 4156*T^13 - 119601*T^12 + 686668*T^11 + 3870514*T^10 - 60858036*T^9 + 137937061*T^8 + 1377429904*T^7 - 8286677044*T^6 - 714461056*T^5 + 120754417616*T^4 - 272689616896*T^3 - 364922395904*T^2 + 2046353911808*T - 2071241191424
61 61 6 1
T 16 + ⋯ − 57875079875 T^{16} + \cdots - 57875079875 T 1 6 + ⋯ − 5 7 8 7 5 0 7 9 8 7 5
T^16 - 22*T^15 - 131*T^14 + 5172*T^13 - 899*T^12 - 478360*T^11 + 847390*T^10 + 22322260*T^9 - 48944690*T^8 - 547707000*T^7 + 1221648150*T^6 + 6479855400*T^5 - 15415376575*T^4 - 28355642750*T^3 + 83043567125*T^2 - 7494103500*T - 57875079875
67 67 6 7
T 16 + ⋯ + 10874045696 T^{16} + \cdots + 10874045696 T 1 6 + ⋯ + 1 0 8 7 4 0 4 5 6 9 6
T^16 + 50*T^15 + 801*T^14 - 228*T^13 - 163176*T^12 - 2129136*T^11 - 10707539*T^10 + 2219098*T^9 + 269895541*T^8 + 1085780072*T^7 + 494097824*T^6 - 7302497632*T^5 - 18904593824*T^4 - 10280143488*T^3 + 20323074304*T^2 + 29673819136*T + 10874045696
71 71 7 1
T 16 + ⋯ − 17821854244720 T^{16} + \cdots - 17821854244720 T 1 6 + ⋯ − 1 7 8 2 1 8 5 4 2 4 4 7 2 0
T^16 - 4*T^15 - 636*T^14 + 1580*T^13 + 156580*T^12 - 99824*T^11 - 19363514*T^10 - 22054996*T^9 + 1254739440*T^8 + 3294894620*T^7 - 40160638516*T^6 - 155777419296*T^5 + 518568658161*T^4 + 2822981253800*T^3 - 922242954660*T^2 - 17219048617280*T - 17821854244720
73 73 7 3
T 16 + ⋯ + 467056954256 T^{16} + \cdots + 467056954256 T 1 6 + ⋯ + 4 6 7 0 5 6 9 5 4 2 5 6
T^16 - 32*T^15 - 44*T^14 + 11424*T^13 - 98884*T^12 - 884856*T^11 + 15766166*T^10 - 29863336*T^9 - 593066164*T^8 + 3397418304*T^7 + 864800524*T^6 - 47152069112*T^5 + 76840707829*T^4 + 178207450776*T^3 - 454555238456*T^2 - 95802961120*T + 467056954256
79 79 7 9
T 16 + ⋯ − 39769573120 T^{16} + \cdots - 39769573120 T 1 6 + ⋯ − 3 9 7 6 9 5 7 3 1 2 0
T^16 - 8*T^15 - 634*T^14 + 3260*T^13 + 161035*T^12 - 340208*T^11 - 20330526*T^10 - 14950128*T^9 + 1238575405*T^8 + 3971808260*T^7 - 26242593984*T^6 - 152472338288*T^5 - 137333541344*T^4 + 373105565120*T^3 + 506256640000*T^2 - 109157228800*T - 39769573120
83 83 8 3
T 16 + ⋯ − 5160481904 T^{16} + \cdots - 5160481904 T 1 6 + ⋯ − 5 1 6 0 4 8 1 9 0 4
T^16 + 30*T^15 + 19*T^14 - 7796*T^13 - 74561*T^12 + 287382*T^11 + 7078254*T^10 + 21667486*T^9 - 140788269*T^8 - 982733184*T^7 - 859176229*T^6 + 8139152086*T^5 + 28274673621*T^4 + 35701019196*T^3 + 13562771676*T^2 - 7223334928*T - 5160481904
89 89 8 9
T 16 + ⋯ − 47559207352064 T^{16} + \cdots - 47559207352064 T 1 6 + ⋯ − 4 7 5 5 9 2 0 7 3 5 2 0 6 4
T^16 - 28*T^15 - 366*T^14 + 15616*T^13 + 139*T^12 - 3056440*T^11 + 12917242*T^10 + 255199692*T^9 - 1622477287*T^8 - 9198149448*T^7 + 73507624792*T^6 + 149910524000*T^5 - 1495732572176*T^4 - 1079154290304*T^3 + 13879308403584*T^2 + 2732998940672*T - 47559207352064
97 97 9 7
T 16 + ⋯ − 42316001699 T^{16} + \cdots - 42316001699 T 1 6 + ⋯ − 4 2 3 1 6 0 0 1 6 9 9
T^16 - 36*T^15 + 140*T^14 + 7740*T^13 - 70810*T^12 - 549288*T^11 + 7342748*T^10 + 12044620*T^9 - 310784805*T^8 + 112539320*T^7 + 5661565548*T^6 - 4262188388*T^5 - 46130666510*T^4 + 23281040940*T^3 + 131521397240*T^2 - 37993251136*T - 42316001699
show more
show less