Properties

Label 2-10e4-1.1-c1-0-29
Degree $2$
Conductor $10000$
Sign $1$
Analytic cond. $79.8504$
Root an. cond. $8.93590$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·3-s − 0.0338·7-s − 0.550·9-s − 5.79·11-s + 3.11·13-s + 4.09·17-s + 0.00975·19-s + 0.0530·21-s − 2.32·23-s + 5.55·27-s + 5.42·29-s + 4.69·31-s + 9.07·33-s − 10.6·37-s − 4.88·39-s + 5.88·41-s − 0.480·43-s − 11.3·47-s − 6.99·49-s − 6.40·51-s + 6.98·53-s − 0.0152·57-s + 7.09·59-s − 5.31·61-s + 0.0186·63-s + 2.91·67-s + 3.63·69-s + ⋯
L(s)  = 1  − 0.903·3-s − 0.0128·7-s − 0.183·9-s − 1.74·11-s + 0.865·13-s + 0.992·17-s + 0.00223·19-s + 0.0115·21-s − 0.484·23-s + 1.06·27-s + 1.00·29-s + 0.843·31-s + 1.57·33-s − 1.75·37-s − 0.781·39-s + 0.918·41-s − 0.0732·43-s − 1.65·47-s − 0.999·49-s − 0.896·51-s + 0.959·53-s − 0.00202·57-s + 0.923·59-s − 0.680·61-s + 0.00235·63-s + 0.356·67-s + 0.437·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10000\)    =    \(2^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(79.8504\)
Root analytic conductor: \(8.93590\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8879791157\)
\(L(\frac12)\) \(\approx\) \(0.8879791157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 1.56T + 3T^{2} \)
7 \( 1 + 0.0338T + 7T^{2} \)
11 \( 1 + 5.79T + 11T^{2} \)
13 \( 1 - 3.11T + 13T^{2} \)
17 \( 1 - 4.09T + 17T^{2} \)
19 \( 1 - 0.00975T + 19T^{2} \)
23 \( 1 + 2.32T + 23T^{2} \)
29 \( 1 - 5.42T + 29T^{2} \)
31 \( 1 - 4.69T + 31T^{2} \)
37 \( 1 + 10.6T + 37T^{2} \)
41 \( 1 - 5.88T + 41T^{2} \)
43 \( 1 + 0.480T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 6.98T + 53T^{2} \)
59 \( 1 - 7.09T + 59T^{2} \)
61 \( 1 + 5.31T + 61T^{2} \)
67 \( 1 - 2.91T + 67T^{2} \)
71 \( 1 + 15.6T + 71T^{2} \)
73 \( 1 + 7.17T + 73T^{2} \)
79 \( 1 - 0.358T + 79T^{2} \)
83 \( 1 + 3.21T + 83T^{2} \)
89 \( 1 + 15.2T + 89T^{2} \)
97 \( 1 - 2.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70352573991668218982049539349, −6.86133182506739236125616640753, −6.15616728105268106535816906765, −5.57795629396026374104606081498, −5.11887262246317663352861962372, −4.37589717402198738455847275008, −3.25425187224258087925180950590, −2.75604947447532208179239460469, −1.54740817363838131779022206198, −0.47397214447986362050194597610, 0.47397214447986362050194597610, 1.54740817363838131779022206198, 2.75604947447532208179239460469, 3.25425187224258087925180950590, 4.37589717402198738455847275008, 5.11887262246317663352861962372, 5.57795629396026374104606081498, 6.15616728105268106535816906765, 6.86133182506739236125616640753, 7.70352573991668218982049539349

Graph of the $Z$-function along the critical line