Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1000,2,Mod(49,1000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1000, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1000.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1000 = 2^{3} \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1000.q (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.98504020213\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 200) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | 0 | −2.79539 | + | 0.908276i | 0 | 0 | 0 | 3.13612i | 0 | 4.56217 | − | 3.31461i | 0 | ||||||||||||||
49.2 | 0 | −1.92858 | + | 0.626633i | 0 | 0 | 0 | − | 0.498275i | 0 | 0.899692 | − | 0.653665i | 0 | |||||||||||||
49.3 | 0 | −1.54478 | + | 0.501931i | 0 | 0 | 0 | − | 2.51754i | 0 | −0.292627 | + | 0.212606i | 0 | |||||||||||||
49.4 | 0 | −0.726954 | + | 0.236202i | 0 | 0 | 0 | 4.32704i | 0 | −1.95438 | + | 1.41994i | 0 | ||||||||||||||
49.5 | 0 | 0.685617 | − | 0.222770i | 0 | 0 | 0 | − | 4.42421i | 0 | −2.00661 | + | 1.45789i | 0 | |||||||||||||
49.6 | 0 | 0.811472 | − | 0.263663i | 0 | 0 | 0 | − | 1.47738i | 0 | −1.83808 | + | 1.33545i | 0 | |||||||||||||
49.7 | 0 | 2.57764 | − | 0.837527i | 0 | 0 | 0 | 0.760910i | 0 | 3.51574 | − | 2.55433i | 0 | ||||||||||||||
49.8 | 0 | 2.92097 | − | 0.949081i | 0 | 0 | 0 | 4.49756i | 0 | 5.20427 | − | 3.78112i | 0 | ||||||||||||||
449.1 | 0 | −2.79539 | − | 0.908276i | 0 | 0 | 0 | − | 3.13612i | 0 | 4.56217 | + | 3.31461i | 0 | |||||||||||||
449.2 | 0 | −1.92858 | − | 0.626633i | 0 | 0 | 0 | 0.498275i | 0 | 0.899692 | + | 0.653665i | 0 | ||||||||||||||
449.3 | 0 | −1.54478 | − | 0.501931i | 0 | 0 | 0 | 2.51754i | 0 | −0.292627 | − | 0.212606i | 0 | ||||||||||||||
449.4 | 0 | −0.726954 | − | 0.236202i | 0 | 0 | 0 | − | 4.32704i | 0 | −1.95438 | − | 1.41994i | 0 | |||||||||||||
449.5 | 0 | 0.685617 | + | 0.222770i | 0 | 0 | 0 | 4.42421i | 0 | −2.00661 | − | 1.45789i | 0 | ||||||||||||||
449.6 | 0 | 0.811472 | + | 0.263663i | 0 | 0 | 0 | 1.47738i | 0 | −1.83808 | − | 1.33545i | 0 | ||||||||||||||
449.7 | 0 | 2.57764 | + | 0.837527i | 0 | 0 | 0 | − | 0.760910i | 0 | 3.51574 | + | 2.55433i | 0 | |||||||||||||
449.8 | 0 | 2.92097 | + | 0.949081i | 0 | 0 | 0 | − | 4.49756i | 0 | 5.20427 | + | 3.78112i | 0 | |||||||||||||
649.1 | 0 | −1.76114 | + | 2.42400i | 0 | 0 | 0 | − | 4.21442i | 0 | −1.84712 | − | 5.68486i | 0 | |||||||||||||
649.2 | 0 | −1.35643 | + | 1.86696i | 0 | 0 | 0 | 4.74404i | 0 | −0.718596 | − | 2.21161i | 0 | ||||||||||||||
649.3 | 0 | −0.919962 | + | 1.26622i | 0 | 0 | 0 | 0.0338937i | 0 | 0.170070 | + | 0.523422i | 0 | ||||||||||||||
649.4 | 0 | −0.0350089 | + | 0.0481856i | 0 | 0 | 0 | − | 1.71675i | 0 | 0.925955 | + | 2.84980i | 0 | |||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1000.2.q.c | 32 | |
5.b | even | 2 | 1 | 200.2.q.a | ✓ | 32 | |
5.c | odd | 4 | 1 | 1000.2.m.d | 32 | ||
5.c | odd | 4 | 1 | 1000.2.m.e | 32 | ||
20.d | odd | 2 | 1 | 400.2.y.d | 32 | ||
25.d | even | 5 | 1 | 200.2.q.a | ✓ | 32 | |
25.e | even | 10 | 1 | inner | 1000.2.q.c | 32 | |
25.f | odd | 20 | 1 | 1000.2.m.d | 32 | ||
25.f | odd | 20 | 1 | 1000.2.m.e | 32 | ||
25.f | odd | 20 | 1 | 5000.2.a.q | 16 | ||
25.f | odd | 20 | 1 | 5000.2.a.r | 16 | ||
100.j | odd | 10 | 1 | 400.2.y.d | 32 | ||
100.l | even | 20 | 1 | 10000.2.a.bq | 16 | ||
100.l | even | 20 | 1 | 10000.2.a.br | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
200.2.q.a | ✓ | 32 | 5.b | even | 2 | 1 | |
200.2.q.a | ✓ | 32 | 25.d | even | 5 | 1 | |
400.2.y.d | 32 | 20.d | odd | 2 | 1 | ||
400.2.y.d | 32 | 100.j | odd | 10 | 1 | ||
1000.2.m.d | 32 | 5.c | odd | 4 | 1 | ||
1000.2.m.d | 32 | 25.f | odd | 20 | 1 | ||
1000.2.m.e | 32 | 5.c | odd | 4 | 1 | ||
1000.2.m.e | 32 | 25.f | odd | 20 | 1 | ||
1000.2.q.c | 32 | 1.a | even | 1 | 1 | trivial | |
1000.2.q.c | 32 | 25.e | even | 10 | 1 | inner | |
5000.2.a.q | 16 | 25.f | odd | 20 | 1 | ||
5000.2.a.r | 16 | 25.f | odd | 20 | 1 | ||
10000.2.a.bq | 16 | 100.l | even | 20 | 1 | ||
10000.2.a.br | 16 | 100.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} - 17 T_{3}^{30} + 216 T_{3}^{28} - 2500 T_{3}^{26} - 460 T_{3}^{25} + 25770 T_{3}^{24} + \cdots + 6400 \) acting on \(S_{2}^{\mathrm{new}}(1000, [\chi])\).