L(s) = 1 | + (−1.22 + 0.707i)5-s + (−0.5 − 0.866i)7-s + (−1.22 − 0.707i)11-s − 13-s + (−0.5 − 0.866i)19-s + (0.499 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (1.22 + 0.707i)35-s + (−0.5 − 0.866i)37-s − 1.41i·41-s + 43-s + (−1.22 + 0.707i)47-s + (−0.499 + 0.866i)49-s + 2·55-s + (1.22 − 0.707i)65-s + ⋯ |
L(s) = 1 | + (−1.22 + 0.707i)5-s + (−0.5 − 0.866i)7-s + (−1.22 − 0.707i)11-s − 13-s + (−0.5 − 0.866i)19-s + (0.499 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (1.22 + 0.707i)35-s + (−0.5 − 0.866i)37-s − 1.41i·41-s + 43-s + (−1.22 + 0.707i)47-s + (−0.499 + 0.866i)49-s + 2·55-s + (1.22 − 0.707i)65-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(−0.851+0.524i)Λ(1−s)
Λ(s)=(=(1008s/2ΓC(s)L(s)(−0.851+0.524i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
−0.851+0.524i
|
Analytic conductor: |
0.503057 |
Root analytic conductor: |
0.709265 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(305,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :0), −0.851+0.524i)
|
Particular Values
L(21) |
≈ |
0.2010716655 |
L(21) |
≈ |
0.2010716655 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.5+0.866i)T |
good | 5 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 11 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 13 | 1+T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1+1.41iT−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+1.41iT−T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−1.41iT−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03503827289418994736538453508, −8.931203825246533758155290959458, −7.924015944353601385400201802547, −7.33139677408003243034124460075, −6.75326508655141925745908134009, −5.43690806510760131763004472120, −4.38463582948927529282666238910, −3.44798733023799191231462458514, −2.62804268978152513700220461899, −0.17505609406316021203943626829,
2.16399280714451659372404236865, 3.30163356021236317721278618921, 4.51154466921230235228734436905, 5.13567215735783345855231034502, 6.21996387356881684044387915527, 7.45994507190752733238767010073, 7.950646564031574696113835090835, 8.748819019362095814093471854051, 9.699129369716018495139620477280, 10.35669186959104996696296019564