L(s) = 1 | + (1.5 − 0.866i)3-s + 0.717i·5-s + (1.62 + 2.09i)7-s + (1.5 − 2.59i)9-s − 1.73i·11-s + (3.62 + 2.09i)13-s + (0.621 + 1.07i)15-s + (−2.74 − 1.58i)17-s + (0.5 + 0.866i)19-s + (4.24 + 1.73i)21-s + 2.74i·23-s + 4.48·25-s − 5.19i·27-s + (0.621 + 1.07i)29-s + (−2 − 3.46i)31-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)3-s + 0.320i·5-s + (0.612 + 0.790i)7-s + (0.5 − 0.866i)9-s − 0.522i·11-s + (1.00 + 0.579i)13-s + (0.160 + 0.277i)15-s + (−0.665 − 0.384i)17-s + (0.114 + 0.198i)19-s + (0.925 + 0.377i)21-s + 0.572i·23-s + 0.897·25-s − 0.999i·27-s + (0.115 + 0.199i)29-s + (−0.359 − 0.622i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.415805328\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.415805328\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 7 | \( 1 + (-1.62 - 2.09i)T \) |
good | 5 | \( 1 - 0.717iT - 5T^{2} \) |
| 11 | \( 1 + 1.73iT - 11T^{2} \) |
| 13 | \( 1 + (-3.62 - 2.09i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.74 + 1.58i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 2.74iT - 23T^{2} \) |
| 29 | \( 1 + (-0.621 - 1.07i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.62 - 2.80i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.74 - 5.04i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.74 - 3.31i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.24 + 7.34i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.621 - 1.07i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 - 3.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 13.2iT - 71T^{2} \) |
| 73 | \( 1 + (7.5 + 4.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.75 - 1.01i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.74 + 9.94i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (14.2 - 8.21i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.74 + 3.31i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.686639087677233519138041981441, −8.922435036878865869291952960451, −8.423039171619323585334585156851, −7.55811230050890886774511042675, −6.60763339465528680760884743295, −5.85567880251763762219836403259, −4.57234564297452348214584034609, −3.44849115990989611222559157105, −2.50050965034555916865752689139, −1.39194112199450662851100491356,
1.28909731602658871808620712879, 2.60564634505660515025632565159, 3.87315565694976427759297664122, 4.46520523520664842589658749324, 5.45048618529686864389697415919, 6.80974553855314858820398758567, 7.62298323539855649434383871201, 8.479716613649731953062449461639, 8.946379025948332111986667573245, 10.02845029878535939604319909301