Properties

Label 1008.2.bf.f.31.2
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(31,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.f.943.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +0.717439i q^{5} +(1.62132 + 2.09077i) q^{7} +(1.50000 - 2.59808i) q^{9} -1.73205i q^{11} +(3.62132 + 2.09077i) q^{13} +(0.621320 + 1.07616i) q^{15} +(-2.74264 - 1.58346i) q^{17} +(0.500000 + 0.866025i) q^{19} +(4.24264 + 1.73205i) q^{21} +2.74666i q^{23} +4.48528 q^{25} -5.19615i q^{27} +(0.621320 + 1.07616i) q^{29} +(-2.00000 - 3.46410i) q^{31} +(-1.50000 - 2.59808i) q^{33} +(-1.50000 + 1.16320i) q^{35} +(1.62132 + 2.80821i) q^{37} +7.24264 q^{39} +(8.74264 + 5.04757i) q^{41} +(-5.74264 + 3.31552i) q^{43} +(1.86396 + 1.07616i) q^{45} +(4.24264 - 7.34847i) q^{47} +(-1.74264 + 6.77962i) q^{49} -5.48528 q^{51} +(-0.621320 + 1.07616i) q^{53} +1.24264 q^{55} +(1.50000 + 0.866025i) q^{57} +(-3.00000 - 5.19615i) q^{59} +(6.00000 + 3.46410i) q^{61} +(7.86396 - 1.07616i) q^{63} +(-1.50000 + 2.59808i) q^{65} +(2.37868 + 4.11999i) q^{69} -13.2621i q^{71} +(-7.50000 - 4.33013i) q^{73} +(6.72792 - 3.88437i) q^{75} +(3.62132 - 2.80821i) q^{77} +(1.75736 + 1.01461i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-5.74264 - 9.94655i) q^{83} +(1.13604 - 1.96768i) q^{85} +(1.86396 + 1.07616i) q^{87} +(-14.2279 + 8.21449i) q^{89} +(1.50000 + 10.9612i) q^{91} +(-6.00000 - 3.46410i) q^{93} +(-0.621320 + 0.358719i) q^{95} +(5.74264 - 3.31552i) q^{97} +(-4.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 2 q^{7} + 6 q^{9} + 6 q^{13} - 6 q^{15} + 6 q^{17} + 2 q^{19} - 16 q^{25} - 6 q^{29} - 8 q^{31} - 6 q^{33} - 6 q^{35} - 2 q^{37} + 12 q^{39} + 18 q^{41} - 6 q^{43} - 18 q^{45} + 10 q^{49}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.866025 0.500000i
\(4\) 0 0
\(5\) 0.717439i 0.320848i 0.987048 + 0.160424i \(0.0512862\pi\)
−0.987048 + 0.160424i \(0.948714\pi\)
\(6\) 0 0
\(7\) 1.62132 + 2.09077i 0.612801 + 0.790237i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 1.73205i 0.522233i −0.965307 0.261116i \(-0.915909\pi\)
0.965307 0.261116i \(-0.0840907\pi\)
\(12\) 0 0
\(13\) 3.62132 + 2.09077i 1.00437 + 0.579875i 0.909539 0.415618i \(-0.136435\pi\)
0.0948342 + 0.995493i \(0.469768\pi\)
\(14\) 0 0
\(15\) 0.621320 + 1.07616i 0.160424 + 0.277863i
\(16\) 0 0
\(17\) −2.74264 1.58346i −0.665188 0.384047i 0.129063 0.991636i \(-0.458803\pi\)
−0.794251 + 0.607590i \(0.792136\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 4.24264 + 1.73205i 0.925820 + 0.377964i
\(22\) 0 0
\(23\) 2.74666i 0.572719i 0.958122 + 0.286359i \(0.0924451\pi\)
−0.958122 + 0.286359i \(0.907555\pi\)
\(24\) 0 0
\(25\) 4.48528 0.897056
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 0.621320 + 1.07616i 0.115376 + 0.199838i 0.917930 0.396742i \(-0.129859\pi\)
−0.802554 + 0.596580i \(0.796526\pi\)
\(30\) 0 0
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) −1.50000 2.59808i −0.261116 0.452267i
\(34\) 0 0
\(35\) −1.50000 + 1.16320i −0.253546 + 0.196616i
\(36\) 0 0
\(37\) 1.62132 + 2.80821i 0.266543 + 0.461667i 0.967967 0.251078i \(-0.0807851\pi\)
−0.701423 + 0.712745i \(0.747452\pi\)
\(38\) 0 0
\(39\) 7.24264 1.15975
\(40\) 0 0
\(41\) 8.74264 + 5.04757i 1.36537 + 0.788297i 0.990333 0.138712i \(-0.0442962\pi\)
0.375038 + 0.927009i \(0.377630\pi\)
\(42\) 0 0
\(43\) −5.74264 + 3.31552i −0.875744 + 0.505611i −0.869253 0.494368i \(-0.835400\pi\)
−0.00649156 + 0.999979i \(0.502066\pi\)
\(44\) 0 0
\(45\) 1.86396 + 1.07616i 0.277863 + 0.160424i
\(46\) 0 0
\(47\) 4.24264 7.34847i 0.618853 1.07188i −0.370843 0.928696i \(-0.620931\pi\)
0.989695 0.143189i \(-0.0457356\pi\)
\(48\) 0 0
\(49\) −1.74264 + 6.77962i −0.248949 + 0.968517i
\(50\) 0 0
\(51\) −5.48528 −0.768093
\(52\) 0 0
\(53\) −0.621320 + 1.07616i −0.0853449 + 0.147822i −0.905538 0.424265i \(-0.860533\pi\)
0.820193 + 0.572087i \(0.193866\pi\)
\(54\) 0 0
\(55\) 1.24264 0.167558
\(56\) 0 0
\(57\) 1.50000 + 0.866025i 0.198680 + 0.114708i
\(58\) 0 0
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) 6.00000 + 3.46410i 0.768221 + 0.443533i 0.832240 0.554416i \(-0.187058\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 7.86396 1.07616i 0.990766 0.135583i
\(64\) 0 0
\(65\) −1.50000 + 2.59808i −0.186052 + 0.322252i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 2.37868 + 4.11999i 0.286359 + 0.495989i
\(70\) 0 0
\(71\) 13.2621i 1.57392i −0.617006 0.786959i \(-0.711655\pi\)
0.617006 0.786959i \(-0.288345\pi\)
\(72\) 0 0
\(73\) −7.50000 4.33013i −0.877809 0.506803i −0.00787336 0.999969i \(-0.502506\pi\)
−0.869935 + 0.493166i \(0.835840\pi\)
\(74\) 0 0
\(75\) 6.72792 3.88437i 0.776874 0.448528i
\(76\) 0 0
\(77\) 3.62132 2.80821i 0.412688 0.320025i
\(78\) 0 0
\(79\) 1.75736 + 1.01461i 0.197718 + 0.114153i 0.595591 0.803288i \(-0.296918\pi\)
−0.397872 + 0.917441i \(0.630251\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) −5.74264 9.94655i −0.630337 1.09178i −0.987483 0.157727i \(-0.949584\pi\)
0.357146 0.934049i \(-0.383750\pi\)
\(84\) 0 0
\(85\) 1.13604 1.96768i 0.123221 0.213425i
\(86\) 0 0
\(87\) 1.86396 + 1.07616i 0.199838 + 0.115376i
\(88\) 0 0
\(89\) −14.2279 + 8.21449i −1.50816 + 0.870735i −0.508202 + 0.861238i \(0.669690\pi\)
−0.999955 + 0.00949668i \(0.996977\pi\)
\(90\) 0 0
\(91\) 1.50000 + 10.9612i 0.157243 + 1.14904i
\(92\) 0 0
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) 0 0
\(95\) −0.621320 + 0.358719i −0.0637461 + 0.0368038i
\(96\) 0 0
\(97\) 5.74264 3.31552i 0.583077 0.336640i −0.179278 0.983798i \(-0.557376\pi\)
0.762355 + 0.647159i \(0.224043\pi\)
\(98\) 0 0
\(99\) −4.50000 2.59808i −0.452267 0.261116i
\(100\) 0 0
\(101\) 4.18154i 0.416079i 0.978120 + 0.208039i \(0.0667082\pi\)
−0.978120 + 0.208039i \(0.933292\pi\)
\(102\) 0 0
\(103\) −11.7279 −1.15559 −0.577793 0.816183i \(-0.696086\pi\)
−0.577793 + 0.816183i \(0.696086\pi\)
\(104\) 0 0
\(105\) −1.24264 + 3.04384i −0.121269 + 0.297048i
\(106\) 0 0
\(107\) −9.98528 + 5.76500i −0.965314 + 0.557324i −0.897804 0.440395i \(-0.854839\pi\)
−0.0675093 + 0.997719i \(0.521505\pi\)
\(108\) 0 0
\(109\) 4.37868 7.58410i 0.419401 0.726425i −0.576478 0.817113i \(-0.695573\pi\)
0.995879 + 0.0906881i \(0.0289066\pi\)
\(110\) 0 0
\(111\) 4.86396 + 2.80821i 0.461667 + 0.266543i
\(112\) 0 0
\(113\) 5.74264 9.94655i 0.540222 0.935692i −0.458669 0.888607i \(-0.651674\pi\)
0.998891 0.0470849i \(-0.0149931\pi\)
\(114\) 0 0
\(115\) −1.97056 −0.183756
\(116\) 0 0
\(117\) 10.8640 6.27231i 1.00437 0.579875i
\(118\) 0 0
\(119\) −1.13604 8.30153i −0.104141 0.761000i
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) 17.4853 1.57659
\(124\) 0 0
\(125\) 6.80511i 0.608668i
\(126\) 0 0
\(127\) 0.594346i 0.0527397i −0.999652 0.0263698i \(-0.991605\pi\)
0.999652 0.0263698i \(-0.00839475\pi\)
\(128\) 0 0
\(129\) −5.74264 + 9.94655i −0.505611 + 0.875744i
\(130\) 0 0
\(131\) −17.4853 −1.52770 −0.763848 0.645396i \(-0.776692\pi\)
−0.763848 + 0.645396i \(0.776692\pi\)
\(132\) 0 0
\(133\) −1.00000 + 2.44949i −0.0867110 + 0.212398i
\(134\) 0 0
\(135\) 3.72792 0.320848
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) −6.50000 + 11.2583i −0.551323 + 0.954919i 0.446857 + 0.894606i \(0.352543\pi\)
−0.998179 + 0.0603135i \(0.980790\pi\)
\(140\) 0 0
\(141\) 14.6969i 1.23771i
\(142\) 0 0
\(143\) 3.62132 6.27231i 0.302830 0.524517i
\(144\) 0 0
\(145\) −0.772078 + 0.445759i −0.0641176 + 0.0370183i
\(146\) 0 0
\(147\) 3.25736 + 11.6786i 0.268662 + 0.963234i
\(148\) 0 0
\(149\) −19.2426 −1.57642 −0.788209 0.615407i \(-0.788992\pi\)
−0.788209 + 0.615407i \(0.788992\pi\)
\(150\) 0 0
\(151\) 23.7775i 1.93498i 0.252905 + 0.967491i \(0.418614\pi\)
−0.252905 + 0.967491i \(0.581386\pi\)
\(152\) 0 0
\(153\) −8.22792 + 4.75039i −0.665188 + 0.384047i
\(154\) 0 0
\(155\) 2.48528 1.43488i 0.199623 0.115252i
\(156\) 0 0
\(157\) −1.75736 + 1.01461i −0.140253 + 0.0809748i −0.568484 0.822694i \(-0.692470\pi\)
0.428232 + 0.903669i \(0.359137\pi\)
\(158\) 0 0
\(159\) 2.15232i 0.170690i
\(160\) 0 0
\(161\) −5.74264 + 4.45322i −0.452583 + 0.350963i
\(162\) 0 0
\(163\) −0.257359 + 0.148586i −0.0201579 + 0.0116382i −0.510045 0.860148i \(-0.670371\pi\)
0.489887 + 0.871786i \(0.337038\pi\)
\(164\) 0 0
\(165\) 1.86396 1.07616i 0.145109 0.0837788i
\(166\) 0 0
\(167\) −7.86396 + 13.6208i −0.608532 + 1.05401i 0.382951 + 0.923769i \(0.374908\pi\)
−0.991483 + 0.130239i \(0.958426\pi\)
\(168\) 0 0
\(169\) 2.24264 + 3.88437i 0.172511 + 0.298798i
\(170\) 0 0
\(171\) 3.00000 0.229416
\(172\) 0 0
\(173\) −8.48528 4.89898i −0.645124 0.372463i 0.141462 0.989944i \(-0.454820\pi\)
−0.786586 + 0.617481i \(0.788153\pi\)
\(174\) 0 0
\(175\) 7.27208 + 9.37769i 0.549717 + 0.708887i
\(176\) 0 0
\(177\) −9.00000 5.19615i −0.676481 0.390567i
\(178\) 0 0
\(179\) −0.985281 0.568852i −0.0736434 0.0425180i 0.462726 0.886501i \(-0.346871\pi\)
−0.536370 + 0.843983i \(0.680205\pi\)
\(180\) 0 0
\(181\) 13.2621i 0.985761i 0.870097 + 0.492881i \(0.164056\pi\)
−0.870097 + 0.492881i \(0.835944\pi\)
\(182\) 0 0
\(183\) 12.0000 0.887066
\(184\) 0 0
\(185\) −2.01472 + 1.16320i −0.148125 + 0.0855200i
\(186\) 0 0
\(187\) −2.74264 + 4.75039i −0.200562 + 0.347383i
\(188\) 0 0
\(189\) 10.8640 8.42463i 0.790237 0.612801i
\(190\) 0 0
\(191\) 15.7279 + 9.08052i 1.13803 + 0.657043i 0.945943 0.324334i \(-0.105140\pi\)
0.192090 + 0.981377i \(0.438473\pi\)
\(192\) 0 0
\(193\) −10.4853 18.1610i −0.754747 1.30726i −0.945500 0.325622i \(-0.894426\pi\)
0.190753 0.981638i \(-0.438907\pi\)
\(194\) 0 0
\(195\) 5.19615i 0.372104i
\(196\) 0 0
\(197\) −14.4853 −1.03203 −0.516017 0.856578i \(-0.672586\pi\)
−0.516017 + 0.856578i \(0.672586\pi\)
\(198\) 0 0
\(199\) 9.86396 17.0849i 0.699238 1.21112i −0.269493 0.963002i \(-0.586856\pi\)
0.968731 0.248113i \(-0.0798104\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.24264 + 3.04384i −0.0872163 + 0.213635i
\(204\) 0 0
\(205\) −3.62132 + 6.27231i −0.252924 + 0.438077i
\(206\) 0 0
\(207\) 7.13604 + 4.11999i 0.495989 + 0.286359i
\(208\) 0 0
\(209\) 1.50000 0.866025i 0.103757 0.0599042i
\(210\) 0 0
\(211\) −14.7426 8.51167i −1.01493 0.585967i −0.102295 0.994754i \(-0.532619\pi\)
−0.912630 + 0.408787i \(0.865952\pi\)
\(212\) 0 0
\(213\) −11.4853 19.8931i −0.786959 1.36305i
\(214\) 0 0
\(215\) −2.37868 4.11999i −0.162225 0.280981i
\(216\) 0 0
\(217\) 4.00000 9.79796i 0.271538 0.665129i
\(218\) 0 0
\(219\) −15.0000 −1.01361
\(220\) 0 0
\(221\) −6.62132 11.4685i −0.445398 0.771452i
\(222\) 0 0
\(223\) 2.62132 + 4.54026i 0.175537 + 0.304038i 0.940347 0.340217i \(-0.110501\pi\)
−0.764810 + 0.644256i \(0.777167\pi\)
\(224\) 0 0
\(225\) 6.72792 11.6531i 0.448528 0.776874i
\(226\) 0 0
\(227\) 17.4853 1.16054 0.580269 0.814425i \(-0.302947\pi\)
0.580269 + 0.814425i \(0.302947\pi\)
\(228\) 0 0
\(229\) 20.0672i 1.32608i 0.748586 + 0.663038i \(0.230733\pi\)
−0.748586 + 0.663038i \(0.769267\pi\)
\(230\) 0 0
\(231\) 3.00000 7.34847i 0.197386 0.483494i
\(232\) 0 0
\(233\) 6.25736 + 10.8381i 0.409933 + 0.710025i 0.994882 0.101045i \(-0.0322187\pi\)
−0.584949 + 0.811070i \(0.698885\pi\)
\(234\) 0 0
\(235\) 5.27208 + 3.04384i 0.343912 + 0.198558i
\(236\) 0 0
\(237\) 3.51472 0.228306
\(238\) 0 0
\(239\) −0.106602 0.0615465i −0.00689549 0.00398111i 0.496548 0.868009i \(-0.334601\pi\)
−0.503444 + 0.864028i \(0.667934\pi\)
\(240\) 0 0
\(241\) 0.297173i 0.0191426i −0.999954 0.00957130i \(-0.996953\pi\)
0.999954 0.00957130i \(-0.00304668\pi\)
\(242\) 0 0
\(243\) −13.5000 7.79423i −0.866025 0.500000i
\(244\) 0 0
\(245\) −4.86396 1.25024i −0.310747 0.0798748i
\(246\) 0 0
\(247\) 4.18154i 0.266065i
\(248\) 0 0
\(249\) −17.2279 9.94655i −1.09178 0.630337i
\(250\) 0 0
\(251\) −26.4853 −1.67174 −0.835868 0.548930i \(-0.815035\pi\)
−0.835868 + 0.548930i \(0.815035\pi\)
\(252\) 0 0
\(253\) 4.75736 0.299093
\(254\) 0 0
\(255\) 3.93535i 0.246441i
\(256\) 0 0
\(257\) 25.3864i 1.58356i −0.610806 0.791781i \(-0.709154\pi\)
0.610806 0.791781i \(-0.290846\pi\)
\(258\) 0 0
\(259\) −3.24264 + 7.94282i −0.201488 + 0.493543i
\(260\) 0 0
\(261\) 3.72792 0.230753
\(262\) 0 0
\(263\) 13.9795i 0.862013i −0.902349 0.431006i \(-0.858159\pi\)
0.902349 0.431006i \(-0.141841\pi\)
\(264\) 0 0
\(265\) −0.772078 0.445759i −0.0474284 0.0273828i
\(266\) 0 0
\(267\) −14.2279 + 24.6435i −0.870735 + 1.50816i
\(268\) 0 0
\(269\) −19.3492 11.1713i −1.17974 0.681126i −0.223789 0.974638i \(-0.571843\pi\)
−0.955955 + 0.293512i \(0.905176\pi\)
\(270\) 0 0
\(271\) 5.86396 + 10.1567i 0.356210 + 0.616974i 0.987324 0.158716i \(-0.0507354\pi\)
−0.631114 + 0.775690i \(0.717402\pi\)
\(272\) 0 0
\(273\) 11.7426 + 15.1427i 0.710697 + 0.916478i
\(274\) 0 0
\(275\) 7.76874i 0.468472i
\(276\) 0 0
\(277\) −11.7279 −0.704663 −0.352331 0.935875i \(-0.614611\pi\)
−0.352331 + 0.935875i \(0.614611\pi\)
\(278\) 0 0
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) 15.9853 + 27.6873i 0.953602 + 1.65169i 0.737536 + 0.675308i \(0.235989\pi\)
0.216066 + 0.976379i \(0.430677\pi\)
\(282\) 0 0
\(283\) −2.75736 4.77589i −0.163908 0.283897i 0.772359 0.635186i \(-0.219077\pi\)
−0.936267 + 0.351289i \(0.885743\pi\)
\(284\) 0 0
\(285\) −0.621320 + 1.07616i −0.0368038 + 0.0637461i
\(286\) 0 0
\(287\) 3.62132 + 26.4626i 0.213760 + 1.56204i
\(288\) 0 0
\(289\) −3.48528 6.03668i −0.205017 0.355099i
\(290\) 0 0
\(291\) 5.74264 9.94655i 0.336640 0.583077i
\(292\) 0 0
\(293\) −14.5919 8.42463i −0.852467 0.492172i 0.00901553 0.999959i \(-0.497130\pi\)
−0.861482 + 0.507787i \(0.830464\pi\)
\(294\) 0 0
\(295\) 3.72792 2.15232i 0.217048 0.125313i
\(296\) 0 0
\(297\) −9.00000 −0.522233
\(298\) 0 0
\(299\) −5.74264 + 9.94655i −0.332105 + 0.575224i
\(300\) 0 0
\(301\) −16.2426 6.63103i −0.936210 0.382206i
\(302\) 0 0
\(303\) 3.62132 + 6.27231i 0.208039 + 0.360335i
\(304\) 0 0
\(305\) −2.48528 + 4.30463i −0.142307 + 0.246483i
\(306\) 0 0
\(307\) −18.4853 −1.05501 −0.527505 0.849552i \(-0.676873\pi\)
−0.527505 + 0.849552i \(0.676873\pi\)
\(308\) 0 0
\(309\) −17.5919 + 10.1567i −1.00077 + 0.577793i
\(310\) 0 0
\(311\) −11.4853 19.8931i −0.651271 1.12803i −0.982815 0.184594i \(-0.940903\pi\)
0.331544 0.943440i \(-0.392430\pi\)
\(312\) 0 0
\(313\) −1.24264 0.717439i −0.0702382 0.0405520i 0.464470 0.885589i \(-0.346245\pi\)
−0.534708 + 0.845037i \(0.679578\pi\)
\(314\) 0 0
\(315\) 0.772078 + 5.64191i 0.0435017 + 0.317886i
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 1.86396 1.07616i 0.104362 0.0602533i
\(320\) 0 0
\(321\) −9.98528 + 17.2950i −0.557324 + 0.965314i
\(322\) 0 0
\(323\) 3.16693i 0.176213i
\(324\) 0 0
\(325\) 16.2426 + 9.37769i 0.900980 + 0.520181i
\(326\) 0 0
\(327\) 15.1682i 0.838803i
\(328\) 0 0
\(329\) 22.2426 3.04384i 1.22628 0.167812i
\(330\) 0 0
\(331\) −9.51472 5.49333i −0.522976 0.301940i 0.215175 0.976575i \(-0.430968\pi\)
−0.738152 + 0.674635i \(0.764301\pi\)
\(332\) 0 0
\(333\) 9.72792 0.533087
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.50000 + 4.33013i −0.136184 + 0.235877i −0.926049 0.377403i \(-0.876817\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 19.8931i 1.08044i
\(340\) 0 0
\(341\) −6.00000 + 3.46410i −0.324918 + 0.187592i
\(342\) 0 0
\(343\) −17.0000 + 7.34847i −0.917914 + 0.396780i
\(344\) 0 0
\(345\) −2.95584 + 1.70656i −0.159137 + 0.0918780i
\(346\) 0 0
\(347\) 24.0000 13.8564i 1.28839 0.743851i 0.310021 0.950730i \(-0.399664\pi\)
0.978367 + 0.206879i \(0.0663306\pi\)
\(348\) 0 0
\(349\) −2.37868 + 1.37333i −0.127328 + 0.0735127i −0.562311 0.826926i \(-0.690088\pi\)
0.434983 + 0.900439i \(0.356754\pi\)
\(350\) 0 0
\(351\) 10.8640 18.8169i 0.579875 1.00437i
\(352\) 0 0
\(353\) 6.63103i 0.352934i 0.984307 + 0.176467i \(0.0564669\pi\)
−0.984307 + 0.176467i \(0.943533\pi\)
\(354\) 0 0
\(355\) 9.51472 0.504989
\(356\) 0 0
\(357\) −8.89340 11.4685i −0.470689 0.606975i
\(358\) 0 0
\(359\) −5.37868 + 3.10538i −0.283876 + 0.163896i −0.635177 0.772367i \(-0.719073\pi\)
0.351301 + 0.936263i \(0.385739\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) 12.0000 6.92820i 0.629837 0.363636i
\(364\) 0 0
\(365\) 3.10660 5.38079i 0.162607 0.281644i
\(366\) 0 0
\(367\) −6.27208 −0.327400 −0.163700 0.986510i \(-0.552343\pi\)
−0.163700 + 0.986510i \(0.552343\pi\)
\(368\) 0 0
\(369\) 26.2279 15.1427i 1.36537 0.788297i
\(370\) 0 0
\(371\) −3.25736 + 0.445759i −0.169114 + 0.0231427i
\(372\) 0 0
\(373\) 35.7279 1.84992 0.924961 0.380062i \(-0.124097\pi\)
0.924961 + 0.380062i \(0.124097\pi\)
\(374\) 0 0
\(375\) 5.89340 + 10.2077i 0.304334 + 0.527122i
\(376\) 0 0
\(377\) 5.19615i 0.267615i
\(378\) 0 0
\(379\) 2.02922i 0.104234i −0.998641 0.0521171i \(-0.983403\pi\)
0.998641 0.0521171i \(-0.0165969\pi\)
\(380\) 0 0
\(381\) −0.514719 0.891519i −0.0263698 0.0456739i
\(382\) 0 0
\(383\) −19.2426 −0.983253 −0.491627 0.870806i \(-0.663597\pi\)
−0.491627 + 0.870806i \(0.663597\pi\)
\(384\) 0 0
\(385\) 2.01472 + 2.59808i 0.102680 + 0.132410i
\(386\) 0 0
\(387\) 19.8931i 1.01122i
\(388\) 0 0
\(389\) 28.7574 1.45806 0.729028 0.684484i \(-0.239972\pi\)
0.729028 + 0.684484i \(0.239972\pi\)
\(390\) 0 0
\(391\) 4.34924 7.53311i 0.219951 0.380966i
\(392\) 0 0
\(393\) −26.2279 + 15.1427i −1.32302 + 0.763848i
\(394\) 0 0
\(395\) −0.727922 + 1.26080i −0.0366257 + 0.0634376i
\(396\) 0 0
\(397\) −33.1066 + 19.1141i −1.66157 + 0.959309i −0.689608 + 0.724183i \(0.742217\pi\)
−0.971965 + 0.235127i \(0.924450\pi\)
\(398\) 0 0
\(399\) 0.621320 + 4.54026i 0.0311049 + 0.227297i
\(400\) 0 0
\(401\) 34.4558 1.72064 0.860321 0.509752i \(-0.170263\pi\)
0.860321 + 0.509752i \(0.170263\pi\)
\(402\) 0 0
\(403\) 16.7262i 0.833189i
\(404\) 0 0
\(405\) 5.59188 3.22848i 0.277863 0.160424i
\(406\) 0 0
\(407\) 4.86396 2.80821i 0.241098 0.139198i
\(408\) 0 0
\(409\) −10.7574 + 6.21076i −0.531917 + 0.307103i −0.741797 0.670625i \(-0.766026\pi\)
0.209880 + 0.977727i \(0.432693\pi\)
\(410\) 0 0
\(411\) 13.5000 7.79423i 0.665906 0.384461i
\(412\) 0 0
\(413\) 6.00000 14.6969i 0.295241 0.723189i
\(414\) 0 0
\(415\) 7.13604 4.11999i 0.350294 0.202243i
\(416\) 0 0
\(417\) 22.5167i 1.10265i
\(418\) 0 0
\(419\) 3.98528 6.90271i 0.194694 0.337219i −0.752106 0.659042i \(-0.770962\pi\)
0.946800 + 0.321822i \(0.104295\pi\)
\(420\) 0 0
\(421\) −6.86396 11.8887i −0.334529 0.579421i 0.648865 0.760903i \(-0.275244\pi\)
−0.983394 + 0.181482i \(0.941911\pi\)
\(422\) 0 0
\(423\) −12.7279 22.0454i −0.618853 1.07188i
\(424\) 0 0
\(425\) −12.3015 7.10228i −0.596711 0.344511i
\(426\) 0 0
\(427\) 2.48528 + 18.1610i 0.120271 + 0.878874i
\(428\) 0 0
\(429\) 12.5446i 0.605660i
\(430\) 0 0
\(431\) 33.8345 + 19.5344i 1.62975 + 0.940938i 0.984166 + 0.177250i \(0.0567200\pi\)
0.645586 + 0.763688i \(0.276613\pi\)
\(432\) 0 0
\(433\) 13.2621i 0.637334i −0.947867 0.318667i \(-0.896765\pi\)
0.947867 0.318667i \(-0.103235\pi\)
\(434\) 0 0
\(435\) −0.772078 + 1.33728i −0.0370183 + 0.0641176i
\(436\) 0 0
\(437\) −2.37868 + 1.37333i −0.113788 + 0.0656953i
\(438\) 0 0
\(439\) 13.4853 23.3572i 0.643617 1.11478i −0.341002 0.940063i \(-0.610766\pi\)
0.984619 0.174715i \(-0.0559005\pi\)
\(440\) 0 0
\(441\) 15.0000 + 14.6969i 0.714286 + 0.699854i
\(442\) 0 0
\(443\) 7.75736 + 4.47871i 0.368563 + 0.212790i 0.672831 0.739797i \(-0.265078\pi\)
−0.304267 + 0.952587i \(0.598412\pi\)
\(444\) 0 0
\(445\) −5.89340 10.2077i −0.279374 0.483890i
\(446\) 0 0
\(447\) −28.8640 + 16.6646i −1.36522 + 0.788209i
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) 8.74264 15.1427i 0.411675 0.713042i
\(452\) 0 0
\(453\) 20.5919 + 35.6662i 0.967491 + 1.67574i
\(454\) 0 0
\(455\) −7.86396 + 1.07616i −0.368668 + 0.0504511i
\(456\) 0 0
\(457\) 19.4853 33.7495i 0.911483 1.57873i 0.0995126 0.995036i \(-0.468272\pi\)
0.811970 0.583699i \(-0.198395\pi\)
\(458\) 0 0
\(459\) −8.22792 + 14.2512i −0.384047 + 0.665188i
\(460\) 0 0
\(461\) 22.8640 13.2005i 1.06488 0.614809i 0.138102 0.990418i \(-0.455900\pi\)
0.926778 + 0.375609i \(0.122566\pi\)
\(462\) 0 0
\(463\) 11.3787 + 6.56948i 0.528812 + 0.305310i 0.740533 0.672020i \(-0.234573\pi\)
−0.211720 + 0.977330i \(0.567907\pi\)
\(464\) 0 0
\(465\) 2.48528 4.30463i 0.115252 0.199623i
\(466\) 0 0
\(467\) 11.7426 + 20.3389i 0.543385 + 0.941170i 0.998707 + 0.0508429i \(0.0161908\pi\)
−0.455322 + 0.890327i \(0.650476\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.75736 + 3.04384i −0.0809748 + 0.140253i
\(472\) 0 0
\(473\) 5.74264 + 9.94655i 0.264047 + 0.457343i
\(474\) 0 0
\(475\) 2.24264 + 3.88437i 0.102899 + 0.178227i
\(476\) 0 0
\(477\) 1.86396 + 3.22848i 0.0853449 + 0.147822i
\(478\) 0 0
\(479\) 7.24264 0.330925 0.165462 0.986216i \(-0.447088\pi\)
0.165462 + 0.986216i \(0.447088\pi\)
\(480\) 0 0
\(481\) 13.5592i 0.618248i
\(482\) 0 0
\(483\) −4.75736 + 11.6531i −0.216467 + 0.530235i
\(484\) 0 0
\(485\) 2.37868 + 4.11999i 0.108010 + 0.187079i
\(486\) 0 0
\(487\) 11.8934 + 6.86666i 0.538941 + 0.311158i 0.744650 0.667455i \(-0.232617\pi\)
−0.205708 + 0.978613i \(0.565950\pi\)
\(488\) 0 0
\(489\) −0.257359 + 0.445759i −0.0116382 + 0.0201579i
\(490\) 0 0
\(491\) 12.9853 + 7.49706i 0.586018 + 0.338337i 0.763521 0.645783i \(-0.223469\pi\)
−0.177504 + 0.984120i \(0.556802\pi\)
\(492\) 0 0
\(493\) 3.93535i 0.177239i
\(494\) 0 0
\(495\) 1.86396 3.22848i 0.0837788 0.145109i
\(496\) 0 0
\(497\) 27.7279 21.5020i 1.24377 0.964499i
\(498\) 0 0
\(499\) 33.7495i 1.51083i −0.655244 0.755417i \(-0.727434\pi\)
0.655244 0.755417i \(-0.272566\pi\)
\(500\) 0 0
\(501\) 27.2416i 1.21706i
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 6.72792 + 3.88437i 0.298798 + 0.172511i
\(508\) 0 0
\(509\) 8.48617i 0.376143i −0.982155 0.188072i \(-0.939776\pi\)
0.982155 0.188072i \(-0.0602237\pi\)
\(510\) 0 0
\(511\) −3.10660 22.7013i −0.137428 1.00425i
\(512\) 0 0
\(513\) 4.50000 2.59808i 0.198680 0.114708i
\(514\) 0 0
\(515\) 8.41407i 0.370768i
\(516\) 0 0
\(517\) −12.7279 7.34847i −0.559773 0.323185i
\(518\) 0 0
\(519\) −16.9706 −0.744925
\(520\) 0 0
\(521\) 7.50000 + 4.33013i 0.328581 + 0.189706i 0.655211 0.755446i \(-0.272580\pi\)
−0.326630 + 0.945152i \(0.605913\pi\)
\(522\) 0 0
\(523\) −0.500000 0.866025i −0.0218635 0.0378686i 0.854887 0.518815i \(-0.173627\pi\)
−0.876750 + 0.480946i \(0.840293\pi\)
\(524\) 0 0
\(525\) 19.0294 + 7.76874i 0.830513 + 0.339055i
\(526\) 0 0
\(527\) 12.6677i 0.551814i
\(528\) 0 0
\(529\) 15.4558 0.671993
\(530\) 0 0
\(531\) −18.0000 −0.781133
\(532\) 0 0
\(533\) 21.1066 + 36.5577i 0.914228 + 1.58349i
\(534\) 0 0
\(535\) −4.13604 7.16383i −0.178817 0.309719i
\(536\) 0 0
\(537\) −1.97056 −0.0850361
\(538\) 0 0
\(539\) 11.7426 + 3.01834i 0.505791 + 0.130009i
\(540\) 0 0
\(541\) 22.1066 + 38.2898i 0.950437 + 1.64621i 0.744481 + 0.667644i \(0.232697\pi\)
0.205956 + 0.978561i \(0.433969\pi\)
\(542\) 0 0
\(543\) 11.4853 + 19.8931i 0.492881 + 0.853694i
\(544\) 0 0
\(545\) 5.44113 + 3.14144i 0.233072 + 0.134564i
\(546\) 0 0
\(547\) 23.2279 13.4106i 0.993154 0.573398i 0.0869386 0.996214i \(-0.472292\pi\)
0.906216 + 0.422816i \(0.138958\pi\)
\(548\) 0 0
\(549\) 18.0000 10.3923i 0.768221 0.443533i
\(550\) 0 0
\(551\) −0.621320 + 1.07616i −0.0264691 + 0.0458459i
\(552\) 0 0
\(553\) 0.727922 + 5.31925i 0.0309544 + 0.226197i
\(554\) 0 0
\(555\) −2.01472 + 3.48960i −0.0855200 + 0.148125i
\(556\) 0 0
\(557\) 9.10660 15.7731i 0.385859 0.668328i −0.606029 0.795443i \(-0.707238\pi\)
0.991888 + 0.127115i \(0.0405718\pi\)
\(558\) 0 0
\(559\) −27.7279 −1.17277
\(560\) 0 0
\(561\) 9.50079i 0.401124i
\(562\) 0 0
\(563\) −0.514719 0.891519i −0.0216928 0.0375730i 0.854975 0.518669i \(-0.173572\pi\)
−0.876668 + 0.481096i \(0.840239\pi\)
\(564\) 0 0
\(565\) 7.13604 + 4.11999i 0.300215 + 0.173329i
\(566\) 0 0
\(567\) 9.00000 22.0454i 0.377964 0.925820i
\(568\) 0 0
\(569\) −11.4853 + 19.8931i −0.481488 + 0.833962i −0.999774 0.0212455i \(-0.993237\pi\)
0.518286 + 0.855207i \(0.326570\pi\)
\(570\) 0 0
\(571\) 27.9411 16.1318i 1.16930 0.675096i 0.215785 0.976441i \(-0.430769\pi\)
0.953515 + 0.301345i \(0.0974357\pi\)
\(572\) 0 0
\(573\) 31.4558 1.31409
\(574\) 0 0
\(575\) 12.3196i 0.513761i
\(576\) 0 0
\(577\) −11.9558 6.90271i −0.497728 0.287364i 0.230047 0.973180i \(-0.426112\pi\)
−0.727775 + 0.685816i \(0.759445\pi\)
\(578\) 0 0
\(579\) −31.4558 18.1610i −1.30726 0.754747i
\(580\) 0 0
\(581\) 11.4853 28.1331i 0.476490 1.16716i
\(582\) 0 0
\(583\) 1.86396 + 1.07616i 0.0771974 + 0.0445699i
\(584\) 0 0
\(585\) 4.50000 + 7.79423i 0.186052 + 0.322252i
\(586\) 0 0
\(587\) 9.98528 + 17.2950i 0.412137 + 0.713842i 0.995123 0.0986402i \(-0.0314493\pi\)
−0.582986 + 0.812482i \(0.698116\pi\)
\(588\) 0 0
\(589\) 2.00000 3.46410i 0.0824086 0.142736i
\(590\) 0 0
\(591\) −21.7279 + 12.5446i −0.893767 + 0.516017i
\(592\) 0 0
\(593\) −11.2279 + 6.48244i −0.461075 + 0.266202i −0.712496 0.701676i \(-0.752436\pi\)
0.251421 + 0.967878i \(0.419102\pi\)
\(594\) 0 0
\(595\) 5.95584 0.815039i 0.244166 0.0334133i
\(596\) 0 0
\(597\) 34.1698i 1.39848i
\(598\) 0 0
\(599\) −6.51472 + 3.76127i −0.266184 + 0.153682i −0.627152 0.778897i \(-0.715780\pi\)
0.360968 + 0.932578i \(0.382446\pi\)
\(600\) 0 0
\(601\) −21.9853 + 12.6932i −0.896798 + 0.517767i −0.876160 0.482020i \(-0.839903\pi\)
−0.0206383 + 0.999787i \(0.506570\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.73951i 0.233344i
\(606\) 0 0
\(607\) 34.6985 1.40837 0.704184 0.710018i \(-0.251313\pi\)
0.704184 + 0.710018i \(0.251313\pi\)
\(608\) 0 0
\(609\) 0.772078 + 5.64191i 0.0312862 + 0.228622i
\(610\) 0 0
\(611\) 30.7279 17.7408i 1.24312 0.717715i
\(612\) 0 0
\(613\) −1.62132 + 2.80821i −0.0654845 + 0.113423i −0.896909 0.442216i \(-0.854193\pi\)
0.831424 + 0.555638i \(0.187526\pi\)
\(614\) 0 0
\(615\) 12.5446i 0.505848i
\(616\) 0 0
\(617\) −2.74264 + 4.75039i −0.110415 + 0.191244i −0.915937 0.401321i \(-0.868551\pi\)
0.805523 + 0.592565i \(0.201885\pi\)
\(618\) 0 0
\(619\) 2.02944 0.0815700 0.0407850 0.999168i \(-0.487014\pi\)
0.0407850 + 0.999168i \(0.487014\pi\)
\(620\) 0 0
\(621\) 14.2721 0.572719
\(622\) 0 0
\(623\) −40.2426 16.4290i −1.61229 0.658214i
\(624\) 0 0
\(625\) 17.5442 0.701766
\(626\) 0 0
\(627\) 1.50000 2.59808i 0.0599042 0.103757i
\(628\) 0 0
\(629\) 10.2692i 0.409460i
\(630\) 0 0
\(631\) 15.2913i 0.608736i −0.952554 0.304368i \(-0.901555\pi\)
0.952554 0.304368i \(-0.0984453\pi\)
\(632\) 0 0
\(633\) −29.4853 −1.17193
\(634\) 0 0
\(635\) 0.426407 0.0169214
\(636\) 0 0
\(637\) −20.4853 + 20.9077i −0.811656 + 0.828393i
\(638\) 0 0
\(639\) −34.4558 19.8931i −1.36305 0.786959i
\(640\) 0 0
\(641\) 36.9411 1.45909 0.729543 0.683935i \(-0.239733\pi\)
0.729543 + 0.683935i \(0.239733\pi\)
\(642\) 0 0
\(643\) −12.2279 + 21.1794i −0.482222 + 0.835233i −0.999792 0.0204078i \(-0.993504\pi\)
0.517570 + 0.855641i \(0.326837\pi\)
\(644\) 0 0
\(645\) −7.13604 4.11999i −0.280981 0.162225i
\(646\) 0 0
\(647\) −7.86396 + 13.6208i −0.309164 + 0.535488i −0.978180 0.207760i \(-0.933383\pi\)
0.669016 + 0.743248i \(0.266716\pi\)
\(648\) 0 0
\(649\) −9.00000 + 5.19615i −0.353281 + 0.203967i
\(650\) 0 0
\(651\) −2.48528 18.1610i −0.0974059 0.711787i
\(652\) 0 0
\(653\) −43.2426 −1.69222 −0.846108 0.533012i \(-0.821060\pi\)
−0.846108 + 0.533012i \(0.821060\pi\)
\(654\) 0 0
\(655\) 12.5446i 0.490159i
\(656\) 0 0
\(657\) −22.5000 + 12.9904i −0.877809 + 0.506803i
\(658\) 0 0
\(659\) −21.4706 + 12.3960i −0.836374 + 0.482881i −0.856030 0.516926i \(-0.827076\pi\)
0.0196558 + 0.999807i \(0.493743\pi\)
\(660\) 0 0
\(661\) 37.4558 21.6251i 1.45686 0.841121i 0.458008 0.888948i \(-0.348563\pi\)
0.998856 + 0.0478276i \(0.0152298\pi\)
\(662\) 0 0
\(663\) −19.8640 11.4685i −0.771452 0.445398i
\(664\) 0 0
\(665\) −1.75736 0.717439i −0.0681475 0.0278211i
\(666\) 0 0
\(667\) −2.95584 + 1.70656i −0.114451 + 0.0660782i
\(668\) 0 0
\(669\) 7.86396 + 4.54026i 0.304038 + 0.175537i
\(670\) 0 0
\(671\) 6.00000 10.3923i 0.231627 0.401190i
\(672\) 0 0
\(673\) −11.9853 20.7591i −0.461999 0.800205i 0.537062 0.843543i \(-0.319534\pi\)
−0.999060 + 0.0433378i \(0.986201\pi\)
\(674\) 0 0
\(675\) 23.3062i 0.897056i
\(676\) 0 0
\(677\) 6.72792 + 3.88437i 0.258575 + 0.149288i 0.623684 0.781676i \(-0.285635\pi\)
−0.365109 + 0.930965i \(0.618968\pi\)
\(678\) 0 0
\(679\) 16.2426 + 6.63103i 0.623335 + 0.254476i
\(680\) 0 0
\(681\) 26.2279 15.1427i 1.00506 0.580269i
\(682\) 0 0
\(683\) 14.0147 + 8.09140i 0.536258 + 0.309609i 0.743561 0.668668i \(-0.233135\pi\)
−0.207303 + 0.978277i \(0.566469\pi\)
\(684\) 0 0
\(685\) 6.45695i 0.246707i
\(686\) 0 0
\(687\) 17.3787 + 30.1008i 0.663038 + 1.14842i
\(688\) 0 0
\(689\) −4.50000 + 2.59808i −0.171436 + 0.0989788i
\(690\) 0 0
\(691\) 11.9706 20.7336i 0.455382 0.788744i −0.543328 0.839520i \(-0.682836\pi\)
0.998710 + 0.0507761i \(0.0161695\pi\)
\(692\) 0 0
\(693\) −1.86396 13.6208i −0.0708060 0.517411i
\(694\) 0 0
\(695\) −8.07716 4.66335i −0.306384 0.176891i
\(696\) 0 0
\(697\) −15.9853 27.6873i −0.605486 1.04873i
\(698\) 0 0
\(699\) 18.7721 + 10.8381i 0.710025 + 0.409933i
\(700\) 0 0
\(701\) 1.02944 0.0388813 0.0194407 0.999811i \(-0.493811\pi\)
0.0194407 + 0.999811i \(0.493811\pi\)
\(702\) 0 0
\(703\) −1.62132 + 2.80821i −0.0611493 + 0.105914i
\(704\) 0 0
\(705\) 10.5442 0.397116
\(706\) 0 0
\(707\) −8.74264 + 6.77962i −0.328801 + 0.254974i
\(708\) 0 0
\(709\) −14.2426 + 24.6690i −0.534894 + 0.926463i 0.464275 + 0.885691i \(0.346315\pi\)
−0.999168 + 0.0407717i \(0.987018\pi\)
\(710\) 0 0
\(711\) 5.27208 3.04384i 0.197718 0.114153i
\(712\) 0 0
\(713\) 9.51472 5.49333i 0.356329 0.205727i
\(714\) 0 0
\(715\) 4.50000 + 2.59808i 0.168290 + 0.0971625i
\(716\) 0 0
\(717\) −0.213203 −0.00796223
\(718\) 0 0
\(719\) 24.6213 + 42.6454i 0.918220 + 1.59040i 0.802117 + 0.597167i \(0.203707\pi\)
0.116103 + 0.993237i \(0.462960\pi\)
\(720\) 0 0
\(721\) −19.0147 24.5204i −0.708145 0.913187i
\(722\) 0 0
\(723\) −0.257359 0.445759i −0.00957130 0.0165780i
\(724\) 0 0
\(725\) 2.78680 + 4.82687i 0.103499 + 0.179266i
\(726\) 0 0
\(727\) −21.3492 36.9780i −0.791800 1.37144i −0.924852 0.380328i \(-0.875811\pi\)
0.133052 0.991109i \(-0.457522\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 21.0000 0.776713
\(732\) 0 0
\(733\) 44.3159i 1.63684i 0.574617 + 0.818422i \(0.305151\pi\)
−0.574617 + 0.818422i \(0.694849\pi\)
\(734\) 0 0
\(735\) −8.37868 + 2.33696i −0.309052 + 0.0861999i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −27.2574 15.7370i −1.00268 0.578897i −0.0936386 0.995606i \(-0.529850\pi\)
−0.909040 + 0.416710i \(0.863183\pi\)
\(740\) 0 0
\(741\) 3.62132 + 6.27231i 0.133033 + 0.230419i
\(742\) 0 0
\(743\) 13.1360 + 7.58410i 0.481915 + 0.278233i 0.721214 0.692712i \(-0.243584\pi\)
−0.239299 + 0.970946i \(0.576918\pi\)
\(744\) 0 0
\(745\) 13.8054i 0.505791i
\(746\) 0 0
\(747\) −34.4558 −1.26067
\(748\) 0 0
\(749\) −28.2426 11.5300i −1.03196 0.421297i
\(750\) 0 0
\(751\) 36.1990i 1.32092i −0.750861 0.660460i \(-0.770361\pi\)
0.750861 0.660460i \(-0.229639\pi\)
\(752\) 0 0
\(753\) −39.7279 + 22.9369i −1.44777 + 0.835868i
\(754\) 0 0
\(755\) −17.0589 −0.620836
\(756\) 0 0
\(757\) 23.9411 0.870155 0.435078 0.900393i \(-0.356721\pi\)
0.435078 + 0.900393i \(0.356721\pi\)
\(758\) 0 0
\(759\) 7.13604 4.11999i 0.259022 0.149546i
\(760\) 0 0
\(761\) 23.9515i 0.868243i −0.900854 0.434121i \(-0.857059\pi\)
0.900854 0.434121i \(-0.142941\pi\)
\(762\) 0 0
\(763\) 22.9558 3.14144i 0.831057 0.113728i
\(764\) 0 0
\(765\) −3.40812 5.90303i −0.123221 0.213425i
\(766\) 0 0
\(767\) 25.0892i 0.905920i
\(768\) 0 0
\(769\) −25.1985 14.5484i −0.908681 0.524627i −0.0286742 0.999589i \(-0.509129\pi\)
−0.880006 + 0.474962i \(0.842462\pi\)
\(770\) 0 0
\(771\) −21.9853 38.0796i −0.791781 1.37140i
\(772\) 0 0
\(773\) 1.34924 + 0.778985i 0.0485289 + 0.0280182i 0.524068 0.851676i \(-0.324414\pi\)
−0.475539 + 0.879694i \(0.657747\pi\)
\(774\) 0 0
\(775\) −8.97056 15.5375i −0.322232 0.558122i
\(776\) 0 0
\(777\) 2.01472 + 14.7224i 0.0722776 + 0.528164i
\(778\) 0 0
\(779\) 10.0951i 0.361696i
\(780\) 0 0
\(781\) −22.9706 −0.821951
\(782\) 0 0
\(783\) 5.59188 3.22848i 0.199838 0.115376i
\(784\) 0 0
\(785\) −0.727922 1.26080i −0.0259807 0.0449998i
\(786\) 0 0
\(787\) 5.24264 + 9.08052i 0.186880 + 0.323686i 0.944208 0.329349i \(-0.106829\pi\)
−0.757328 + 0.653034i \(0.773496\pi\)
\(788\) 0 0
\(789\) −12.1066 20.9692i −0.431006 0.746525i
\(790\) 0 0
\(791\) 30.1066 4.11999i 1.07047 0.146490i
\(792\) 0 0
\(793\) 14.4853 + 25.0892i 0.514387 + 0.890945i
\(794\) 0 0
\(795\) −1.54416 −0.0547656
\(796\) 0 0
\(797\) −6.10660 3.52565i −0.216307 0.124885i 0.387932 0.921688i \(-0.373189\pi\)
−0.604239 + 0.796803i \(0.706523\pi\)
\(798\) 0 0
\(799\) −23.2721 + 13.4361i −0.823307 + 0.475336i
\(800\) 0 0
\(801\) 49.2870i 1.74147i
\(802\) 0 0
\(803\) −7.50000 + 12.9904i −0.264669 + 0.458421i
\(804\) 0 0
\(805\) −3.19491 4.11999i −0.112606 0.145211i
\(806\) 0 0
\(807\) −38.6985 −1.36225
\(808\) 0 0
\(809\) 15.9853 27.6873i 0.562013 0.973434i −0.435308 0.900282i \(-0.643361\pi\)
0.997321 0.0731528i \(-0.0233061\pi\)
\(810\) 0 0
\(811\) 37.9411 1.33229 0.666147 0.745821i \(-0.267943\pi\)
0.666147 + 0.745821i \(0.267943\pi\)
\(812\) 0 0
\(813\) 17.5919 + 10.1567i 0.616974 + 0.356210i
\(814\) 0 0
\(815\) −0.106602 0.184640i −0.00373410 0.00646764i
\(816\) 0 0
\(817\) −5.74264 3.31552i −0.200910 0.115995i
\(818\) 0 0
\(819\) 30.7279 + 12.5446i 1.07372 + 0.438345i
\(820\) 0 0
\(821\) −24.7279 + 42.8300i −0.863010 + 1.49478i 0.00599878 + 0.999982i \(0.498091\pi\)
−0.869009 + 0.494796i \(0.835243\pi\)
\(822\) 0 0
\(823\) −42.2132 + 24.3718i −1.47146 + 0.849548i −0.999486 0.0320648i \(-0.989792\pi\)
−0.471974 + 0.881612i \(0.656458\pi\)
\(824\) 0 0
\(825\) −6.72792 11.6531i −0.234236 0.405709i
\(826\) 0 0
\(827\) 21.6251i 0.751980i 0.926624 + 0.375990i \(0.122697\pi\)
−0.926624 + 0.375990i \(0.877303\pi\)
\(828\) 0 0
\(829\) −18.8345 10.8741i −0.654150 0.377674i 0.135894 0.990723i \(-0.456609\pi\)
−0.790044 + 0.613050i \(0.789943\pi\)
\(830\) 0 0
\(831\) −17.5919 + 10.1567i −0.610256 + 0.352331i
\(832\) 0 0
\(833\) 15.5147 15.8346i 0.537553 0.548638i
\(834\) 0 0
\(835\) −9.77208 5.64191i −0.338177 0.195246i
\(836\) 0 0
\(837\) −18.0000 + 10.3923i −0.622171 + 0.359211i
\(838\) 0 0
\(839\) 9.62132 + 16.6646i 0.332165 + 0.575326i 0.982936 0.183947i \(-0.0588876\pi\)
−0.650771 + 0.759274i \(0.725554\pi\)
\(840\) 0 0
\(841\) 13.7279 23.7775i 0.473377 0.819912i
\(842\) 0 0
\(843\) 47.9558 + 27.6873i 1.65169 + 0.953602i
\(844\) 0 0
\(845\) −2.78680 + 1.60896i −0.0958687 + 0.0553498i
\(846\) 0 0
\(847\) 12.9706 + 16.7262i 0.445674 + 0.574718i
\(848\) 0 0
\(849\) −8.27208 4.77589i −0.283897 0.163908i
\(850\) 0 0
\(851\) −7.71320 + 4.45322i −0.264405 + 0.152654i
\(852\) 0 0
\(853\) −7.86396 + 4.54026i −0.269257 + 0.155456i −0.628550 0.777769i \(-0.716351\pi\)
0.359293 + 0.933225i \(0.383018\pi\)
\(854\) 0 0
\(855\) 2.15232i 0.0736077i
\(856\) 0 0
\(857\) 4.60181i 0.157195i 0.996906 + 0.0785974i \(0.0250441\pi\)
−0.996906 + 0.0785974i \(0.974956\pi\)
\(858\) 0 0
\(859\) 33.9706 1.15906 0.579530 0.814951i \(-0.303236\pi\)
0.579530 + 0.814951i \(0.303236\pi\)
\(860\) 0 0
\(861\) 28.3492 + 36.5577i 0.966140 + 1.24588i
\(862\) 0 0
\(863\) −5.59188 + 3.22848i −0.190350 + 0.109899i −0.592146 0.805830i \(-0.701719\pi\)
0.401796 + 0.915729i \(0.368386\pi\)
\(864\) 0 0
\(865\) 3.51472 6.08767i 0.119504 0.206987i
\(866\) 0 0
\(867\) −10.4558 6.03668i −0.355099 0.205017i
\(868\) 0 0
\(869\) 1.75736 3.04384i 0.0596143 0.103255i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 19.8931i 0.673279i
\(874\) 0 0
\(875\) −14.2279 + 11.0333i −0.480992 + 0.372992i
\(876\) 0 0
\(877\) −12.6985 −0.428797 −0.214399 0.976746i \(-0.568779\pi\)
−0.214399 + 0.976746i \(0.568779\pi\)
\(878\) 0 0
\(879\) −29.1838 −0.984344
\(880\) 0 0
\(881\) 22.2195i 0.748594i 0.927309 + 0.374297i \(0.122116\pi\)
−0.927309 + 0.374297i \(0.877884\pi\)
\(882\) 0 0
\(883\) 4.89898i 0.164864i 0.996597 + 0.0824319i \(0.0262687\pi\)
−0.996597 + 0.0824319i \(0.973731\pi\)
\(884\) 0 0
\(885\) 3.72792 6.45695i 0.125313 0.217048i
\(886\) 0 0
\(887\) −43.6690 −1.46626 −0.733132 0.680087i \(-0.761942\pi\)
−0.733132 + 0.680087i \(0.761942\pi\)
\(888\) 0 0
\(889\) 1.24264 0.963625i 0.0416768 0.0323189i
\(890\) 0 0
\(891\) −13.5000 + 7.79423i −0.452267 + 0.261116i
\(892\) 0 0
\(893\) 8.48528 0.283949
\(894\) 0 0
\(895\) 0.408117 0.706879i 0.0136418 0.0236284i
\(896\) 0 0
\(897\) 19.8931i 0.664211i
\(898\) 0 0
\(899\) 2.48528 4.30463i 0.0828888 0.143568i
\(900\) 0 0
\(901\) 3.40812 1.96768i 0.113541 0.0655528i
\(902\) 0 0
\(903\) −30.1066 + 4.11999i −1.00188 + 0.137105i
\(904\) 0 0
\(905\) −9.51472 −0.316280
\(906\) 0 0
\(907\) 1.13770i 0.0377769i 0.999822 + 0.0188884i \(0.00601273\pi\)
−0.999822 + 0.0188884i \(0.993987\pi\)
\(908\) 0 0
\(909\) 10.8640 + 6.27231i 0.360335 + 0.208039i
\(910\) 0 0
\(911\) 16.1360 9.31615i 0.534611 0.308658i −0.208281 0.978069i \(-0.566787\pi\)
0.742892 + 0.669411i \(0.233454\pi\)
\(912\) 0 0
\(913\) −17.2279 + 9.94655i −0.570161 + 0.329183i
\(914\) 0 0
\(915\) 8.60927i 0.284614i
\(916\) 0 0
\(917\) −28.3492 36.5577i −0.936174 1.20724i
\(918\) 0 0
\(919\) −4.13604 + 2.38794i −0.136435 + 0.0787710i −0.566664 0.823949i \(-0.691766\pi\)
0.430229 + 0.902720i \(0.358433\pi\)
\(920\) 0 0
\(921\) −27.7279 + 16.0087i −0.913666 + 0.527505i
\(922\) 0 0
\(923\) 27.7279 48.0262i 0.912676 1.58080i
\(924\) 0 0
\(925\) 7.27208 + 12.5956i 0.239104 + 0.414141i
\(926\) 0 0
\(927\) −17.5919 + 30.4700i −0.577793 + 1.00077i
\(928\) 0 0
\(929\) −41.4853 23.9515i −1.36109 0.785824i −0.371319 0.928505i \(-0.621094\pi\)
−0.989769 + 0.142681i \(0.954428\pi\)
\(930\) 0 0
\(931\) −6.74264 + 1.88064i −0.220981 + 0.0616354i
\(932\) 0 0
\(933\) −34.4558 19.8931i −1.12803 0.651271i
\(934\) 0 0
\(935\) −3.40812 1.96768i −0.111457 0.0643499i
\(936\) 0 0
\(937\) 52.4539i 1.71359i −0.515654 0.856797i \(-0.672451\pi\)
0.515654 0.856797i \(-0.327549\pi\)
\(938\) 0 0
\(939\) −2.48528 −0.0811041
\(940\) 0 0
\(941\) 31.4558 18.1610i 1.02543 0.592033i 0.109759 0.993958i \(-0.464992\pi\)
0.915672 + 0.401925i \(0.131659\pi\)
\(942\) 0 0
\(943\) −13.8640 + 24.0131i −0.451473 + 0.781974i
\(944\) 0 0
\(945\) 6.04416 + 7.79423i 0.196616 + 0.253546i
\(946\) 0 0
\(947\) 49.9706 + 28.8505i 1.62383 + 0.937516i 0.985884 + 0.167431i \(0.0535471\pi\)
0.637941 + 0.770085i \(0.279786\pi\)
\(948\) 0 0
\(949\) −18.1066 31.3616i −0.587765 1.01804i
\(950\) 0 0
\(951\) 31.1769i 1.01098i
\(952\) 0 0
\(953\) 27.5147 0.891289 0.445645 0.895210i \(-0.352975\pi\)
0.445645 + 0.895210i \(0.352975\pi\)
\(954\) 0 0
\(955\) −6.51472 + 11.2838i −0.210811 + 0.365136i
\(956\) 0 0
\(957\) 1.86396 3.22848i 0.0602533 0.104362i
\(958\) 0 0
\(959\) 14.5919 + 18.8169i 0.471196 + 0.607630i
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 0 0
\(963\) 34.5900i 1.11465i
\(964\) 0 0
\(965\) 13.0294 7.52255i 0.419432 0.242159i
\(966\) 0 0
\(967\) −32.5919 18.8169i −1.04808 0.605112i −0.125972 0.992034i \(-0.540205\pi\)
−0.922112 + 0.386922i \(0.873538\pi\)
\(968\) 0 0
\(969\) −2.74264 4.75039i −0.0881063 0.152605i
\(970\) 0 0
\(971\) 6.25736 + 10.8381i 0.200808 + 0.347810i 0.948789 0.315910i \(-0.102310\pi\)
−0.747981 + 0.663720i \(0.768977\pi\)
\(972\) 0 0
\(973\) −34.0772 + 4.66335i −1.09246 + 0.149500i
\(974\) 0 0
\(975\) 32.4853 1.04036
\(976\) 0 0
\(977\) 8.48528 + 14.6969i 0.271468 + 0.470197i 0.969238 0.246125i \(-0.0791575\pi\)
−0.697770 + 0.716322i \(0.745824\pi\)
\(978\) 0 0
\(979\) 14.2279 + 24.6435i 0.454726 + 0.787609i
\(980\) 0 0
\(981\) −13.1360 22.7523i −0.419401 0.726425i
\(982\) 0 0
\(983\) −25.2426 −0.805115 −0.402558 0.915395i \(-0.631879\pi\)
−0.402558 + 0.915395i \(0.631879\pi\)
\(984\) 0 0
\(985\) 10.3923i 0.331126i
\(986\) 0 0
\(987\) 30.7279 23.8284i 0.978081 0.758468i
\(988\) 0 0
\(989\) −9.10660 15.7731i −0.289573 0.501555i
\(990\) 0 0
\(991\) −25.1360 14.5123i −0.798473 0.460998i 0.0444642 0.999011i \(-0.485842\pi\)
−0.842937 + 0.538013i \(0.819175\pi\)
\(992\) 0 0
\(993\) −19.0294 −0.603881
\(994\) 0 0
\(995\) 12.2574 + 7.07679i 0.388584 + 0.224349i
\(996\) 0 0
\(997\) 9.08052i 0.287583i −0.989608 0.143791i \(-0.954071\pi\)
0.989608 0.143791i \(-0.0459295\pi\)
\(998\) 0 0
\(999\) 14.5919 8.42463i 0.461667 0.266543i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.f.31.2 yes 4
3.2 odd 2 3024.2.bf.e.1711.1 4
4.3 odd 2 1008.2.bf.e.31.2 4
7.5 odd 6 1008.2.cz.e.607.1 yes 4
9.2 odd 6 3024.2.cz.f.2719.2 4
9.7 even 3 1008.2.cz.f.367.1 yes 4
12.11 even 2 3024.2.bf.f.1711.1 4
21.5 even 6 3024.2.cz.e.1279.2 4
28.19 even 6 1008.2.cz.f.607.1 yes 4
36.7 odd 6 1008.2.cz.e.367.1 yes 4
36.11 even 6 3024.2.cz.e.2719.2 4
63.47 even 6 3024.2.bf.f.2287.2 4
63.61 odd 6 1008.2.bf.e.943.1 yes 4
84.47 odd 6 3024.2.cz.f.1279.2 4
252.47 odd 6 3024.2.bf.e.2287.2 4
252.187 even 6 inner 1008.2.bf.f.943.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.e.31.2 4 4.3 odd 2
1008.2.bf.e.943.1 yes 4 63.61 odd 6
1008.2.bf.f.31.2 yes 4 1.1 even 1 trivial
1008.2.bf.f.943.1 yes 4 252.187 even 6 inner
1008.2.cz.e.367.1 yes 4 36.7 odd 6
1008.2.cz.e.607.1 yes 4 7.5 odd 6
1008.2.cz.f.367.1 yes 4 9.7 even 3
1008.2.cz.f.607.1 yes 4 28.19 even 6
3024.2.bf.e.1711.1 4 3.2 odd 2
3024.2.bf.e.2287.2 4 252.47 odd 6
3024.2.bf.f.1711.1 4 12.11 even 2
3024.2.bf.f.2287.2 4 63.47 even 6
3024.2.cz.e.1279.2 4 21.5 even 6
3024.2.cz.e.2719.2 4 36.11 even 6
3024.2.cz.f.1279.2 4 84.47 odd 6
3024.2.cz.f.2719.2 4 9.2 odd 6