Properties

Label 3024.2.cz.e.2719.2
Level $3024$
Weight $2$
Character 3024.2719
Analytic conductor $24.147$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1279,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1279");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cz (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2719.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2719
Dual form 3024.2.cz.e.1279.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.621320 + 0.358719i) q^{5} +(-1.00000 + 2.44949i) q^{7} +(-1.50000 + 0.866025i) q^{11} +(-3.62132 + 2.09077i) q^{13} +(2.74264 + 1.58346i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(-2.37868 - 1.37333i) q^{23} +(-2.24264 - 3.88437i) q^{25} +(-0.621320 + 1.07616i) q^{29} -4.00000 q^{31} +(-1.50000 + 1.16320i) q^{35} +(1.62132 + 2.80821i) q^{37} +(8.74264 - 5.04757i) q^{41} +(-5.74264 - 3.31552i) q^{43} -8.48528 q^{47} +(-5.00000 - 4.89898i) q^{49} +(0.621320 - 1.07616i) q^{53} -1.24264 q^{55} +6.00000 q^{59} -6.92820i q^{61} -3.00000 q^{65} -13.2621i q^{71} +(-7.50000 - 4.33013i) q^{73} +(-0.621320 - 4.54026i) q^{77} +2.02922i q^{79} +(-5.74264 + 9.94655i) q^{83} +(1.13604 + 1.96768i) q^{85} +(14.2279 - 8.21449i) q^{89} +(-1.50000 - 10.9612i) q^{91} -0.717439i q^{95} +(-5.74264 - 3.31552i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 4 q^{7} - 6 q^{11} - 6 q^{13} - 6 q^{17} - 2 q^{19} - 18 q^{23} + 8 q^{25} + 6 q^{29} - 16 q^{31} - 6 q^{35} - 2 q^{37} + 18 q^{41} - 6 q^{43} - 20 q^{49} - 6 q^{53} + 12 q^{55} + 24 q^{59}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.621320 + 0.358719i 0.277863 + 0.160424i 0.632456 0.774597i \(-0.282047\pi\)
−0.354593 + 0.935021i \(0.615380\pi\)
\(6\) 0 0
\(7\) −1.00000 + 2.44949i −0.377964 + 0.925820i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 0.866025i −0.452267 + 0.261116i −0.708787 0.705422i \(-0.750757\pi\)
0.256520 + 0.966539i \(0.417424\pi\)
\(12\) 0 0
\(13\) −3.62132 + 2.09077i −1.00437 + 0.579875i −0.909539 0.415618i \(-0.863565\pi\)
−0.0948342 + 0.995493i \(0.530232\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.74264 + 1.58346i 0.665188 + 0.384047i 0.794251 0.607590i \(-0.207864\pi\)
−0.129063 + 0.991636i \(0.541197\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.37868 1.37333i −0.495989 0.286359i 0.231067 0.972938i \(-0.425778\pi\)
−0.727056 + 0.686579i \(0.759112\pi\)
\(24\) 0 0
\(25\) −2.24264 3.88437i −0.448528 0.776874i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.621320 + 1.07616i −0.115376 + 0.199838i −0.917930 0.396742i \(-0.870141\pi\)
0.802554 + 0.596580i \(0.203474\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 + 1.16320i −0.253546 + 0.196616i
\(36\) 0 0
\(37\) 1.62132 + 2.80821i 0.266543 + 0.461667i 0.967967 0.251078i \(-0.0807851\pi\)
−0.701423 + 0.712745i \(0.747452\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.74264 5.04757i 1.36537 0.788297i 0.375038 0.927009i \(-0.377630\pi\)
0.990333 + 0.138712i \(0.0442962\pi\)
\(42\) 0 0
\(43\) −5.74264 3.31552i −0.875744 0.505611i −0.00649156 0.999979i \(-0.502066\pi\)
−0.869253 + 0.494368i \(0.835400\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.48528 −1.23771 −0.618853 0.785507i \(-0.712402\pi\)
−0.618853 + 0.785507i \(0.712402\pi\)
\(48\) 0 0
\(49\) −5.00000 4.89898i −0.714286 0.699854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.621320 1.07616i 0.0853449 0.147822i −0.820193 0.572087i \(-0.806134\pi\)
0.905538 + 0.424265i \(0.139467\pi\)
\(54\) 0 0
\(55\) −1.24264 −0.167558
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 6.92820i 0.887066i −0.896258 0.443533i \(-0.853725\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.2621i 1.57392i −0.617006 0.786959i \(-0.711655\pi\)
0.617006 0.786959i \(-0.288345\pi\)
\(72\) 0 0
\(73\) −7.50000 4.33013i −0.877809 0.506803i −0.00787336 0.999969i \(-0.502506\pi\)
−0.869935 + 0.493166i \(0.835840\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.621320 4.54026i −0.0708060 0.517411i
\(78\) 0 0
\(79\) 2.02922i 0.228306i 0.993463 + 0.114153i \(0.0364153\pi\)
−0.993463 + 0.114153i \(0.963585\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.74264 + 9.94655i −0.630337 + 1.09178i 0.357146 + 0.934049i \(0.383750\pi\)
−0.987483 + 0.157727i \(0.949584\pi\)
\(84\) 0 0
\(85\) 1.13604 + 1.96768i 0.123221 + 0.213425i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.2279 8.21449i 1.50816 0.870735i 0.508202 0.861238i \(-0.330310\pi\)
0.999955 0.00949668i \(-0.00302293\pi\)
\(90\) 0 0
\(91\) −1.50000 10.9612i −0.157243 1.14904i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.717439i 0.0736077i
\(96\) 0 0
\(97\) −5.74264 3.31552i −0.583077 0.336640i 0.179278 0.983798i \(-0.442624\pi\)
−0.762355 + 0.647159i \(0.775957\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.62132 + 2.09077i −0.360335 + 0.208039i −0.669228 0.743057i \(-0.733375\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(102\) 0 0
\(103\) −5.86396 + 10.1567i −0.577793 + 1.00077i 0.417939 + 0.908475i \(0.362753\pi\)
−0.995732 + 0.0922920i \(0.970581\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.98528 + 5.76500i −0.965314 + 0.557324i −0.897804 0.440395i \(-0.854839\pi\)
−0.0675093 + 0.997719i \(0.521505\pi\)
\(108\) 0 0
\(109\) 4.37868 7.58410i 0.419401 0.726425i −0.576478 0.817113i \(-0.695573\pi\)
0.995879 + 0.0906881i \(0.0289066\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.74264 9.94655i −0.540222 0.935692i −0.998891 0.0470849i \(-0.985007\pi\)
0.458669 0.888607i \(-0.348326\pi\)
\(114\) 0 0
\(115\) −0.985281 1.70656i −0.0918780 0.159137i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.62132 + 5.13461i −0.606975 + 0.470689i
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.80511i 0.608668i
\(126\) 0 0
\(127\) 0.594346i 0.0527397i 0.999652 + 0.0263698i \(0.00839475\pi\)
−0.999652 + 0.0263698i \(0.991605\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.74264 15.1427i 0.763848 1.32302i −0.177005 0.984210i \(-0.556641\pi\)
0.940853 0.338814i \(-0.110026\pi\)
\(132\) 0 0
\(133\) 2.62132 0.358719i 0.227297 0.0311049i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.50000 + 7.79423i 0.384461 + 0.665906i 0.991694 0.128618i \(-0.0410540\pi\)
−0.607233 + 0.794524i \(0.707721\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.62132 6.27231i 0.302830 0.524517i
\(144\) 0 0
\(145\) −0.772078 + 0.445759i −0.0641176 + 0.0370183i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.62132 + 16.6646i −0.788209 + 1.36522i 0.138854 + 0.990313i \(0.455658\pi\)
−0.927063 + 0.374906i \(0.877675\pi\)
\(150\) 0 0
\(151\) −20.5919 + 11.8887i −1.67574 + 0.967491i −0.711419 + 0.702768i \(0.751947\pi\)
−0.964324 + 0.264723i \(0.914719\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.48528 1.43488i −0.199623 0.115252i
\(156\) 0 0
\(157\) 2.02922i 0.161950i −0.996716 0.0809748i \(-0.974197\pi\)
0.996716 0.0809748i \(-0.0258033\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.74264 4.45322i 0.452583 0.350963i
\(162\) 0 0
\(163\) 0.257359 0.148586i 0.0201579 0.0116382i −0.489887 0.871786i \(-0.662962\pi\)
0.510045 + 0.860148i \(0.329629\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.86396 13.6208i −0.608532 1.05401i −0.991483 0.130239i \(-0.958426\pi\)
0.382951 0.923769i \(-0.374908\pi\)
\(168\) 0 0
\(169\) 2.24264 3.88437i 0.172511 0.298798i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.79796i 0.744925i −0.928047 0.372463i \(-0.878514\pi\)
0.928047 0.372463i \(-0.121486\pi\)
\(174\) 0 0
\(175\) 11.7574 1.60896i 0.888773 0.121626i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.985281 0.568852i −0.0736434 0.0425180i 0.462726 0.886501i \(-0.346871\pi\)
−0.536370 + 0.843983i \(0.680205\pi\)
\(180\) 0 0
\(181\) 13.2621i 0.985761i 0.870097 + 0.492881i \(0.164056\pi\)
−0.870097 + 0.492881i \(0.835944\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.32640i 0.171040i
\(186\) 0 0
\(187\) −5.48528 −0.401124
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1610i 1.31409i −0.753853 0.657043i \(-0.771807\pi\)
0.753853 0.657043i \(-0.228193\pi\)
\(192\) 0 0
\(193\) 20.9706 1.50949 0.754747 0.656016i \(-0.227760\pi\)
0.754747 + 0.656016i \(0.227760\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4853 1.03203 0.516017 0.856578i \(-0.327414\pi\)
0.516017 + 0.856578i \(0.327414\pi\)
\(198\) 0 0
\(199\) −9.86396 + 17.0849i −0.699238 + 1.21112i 0.269493 + 0.963002i \(0.413144\pi\)
−0.968731 + 0.248113i \(0.920190\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.01472 2.59808i −0.141406 0.182349i
\(204\) 0 0
\(205\) 7.24264 0.505848
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.50000 + 0.866025i 0.103757 + 0.0599042i
\(210\) 0 0
\(211\) −14.7426 + 8.51167i −1.01493 + 0.585967i −0.912630 0.408787i \(-0.865952\pi\)
−0.102295 + 0.994754i \(0.532619\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.37868 4.11999i −0.162225 0.280981i
\(216\) 0 0
\(217\) 4.00000 9.79796i 0.271538 0.665129i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.2426 −0.890796
\(222\) 0 0
\(223\) −2.62132 + 4.54026i −0.175537 + 0.304038i −0.940347 0.340217i \(-0.889499\pi\)
0.764810 + 0.644256i \(0.222833\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.74264 15.1427i −0.580269 1.00506i −0.995447 0.0953158i \(-0.969614\pi\)
0.415178 0.909740i \(-0.363719\pi\)
\(228\) 0 0
\(229\) −17.3787 10.0336i −1.14842 0.663038i −0.199915 0.979813i \(-0.564067\pi\)
−0.948501 + 0.316775i \(0.897400\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.25736 10.8381i −0.409933 0.710025i 0.584949 0.811070i \(-0.301115\pi\)
−0.994882 + 0.101045i \(0.967781\pi\)
\(234\) 0 0
\(235\) −5.27208 3.04384i −0.343912 0.198558i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.106602 0.0615465i 0.00689549 0.00398111i −0.496548 0.868009i \(-0.665399\pi\)
0.503444 + 0.864028i \(0.332066\pi\)
\(240\) 0 0
\(241\) −0.257359 + 0.148586i −0.0165780 + 0.00957130i −0.508266 0.861200i \(-0.669713\pi\)
0.491688 + 0.870771i \(0.336380\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.34924 4.83743i −0.0861999 0.309052i
\(246\) 0 0
\(247\) 3.62132 + 2.09077i 0.230419 + 0.133033i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.4853 −1.67174 −0.835868 0.548930i \(-0.815035\pi\)
−0.835868 + 0.548930i \(0.815035\pi\)
\(252\) 0 0
\(253\) 4.75736 0.299093
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.9853 12.6932i −1.37140 0.791781i −0.380299 0.924863i \(-0.624179\pi\)
−0.991105 + 0.133083i \(0.957512\pi\)
\(258\) 0 0
\(259\) −8.50000 + 1.16320i −0.528164 + 0.0722776i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.1066 + 6.98975i −0.746525 + 0.431006i −0.824437 0.565954i \(-0.808508\pi\)
0.0779119 + 0.996960i \(0.475175\pi\)
\(264\) 0 0
\(265\) 0.772078 0.445759i 0.0474284 0.0273828i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.3492 + 11.1713i 1.17974 + 0.681126i 0.955955 0.293512i \(-0.0948241\pi\)
0.223789 + 0.974638i \(0.428157\pi\)
\(270\) 0 0
\(271\) −5.86396 10.1567i −0.356210 0.616974i 0.631114 0.775690i \(-0.282598\pi\)
−0.987324 + 0.158716i \(0.949265\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.72792 + 3.88437i 0.405709 + 0.234236i
\(276\) 0 0
\(277\) 5.86396 + 10.1567i 0.352331 + 0.610256i 0.986657 0.162810i \(-0.0520557\pi\)
−0.634326 + 0.773066i \(0.718722\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.9853 + 27.6873i −0.953602 + 1.65169i −0.216066 + 0.976379i \(0.569323\pi\)
−0.737536 + 0.675308i \(0.764011\pi\)
\(282\) 0 0
\(283\) −5.51472 −0.327816 −0.163908 0.986476i \(-0.552410\pi\)
−0.163908 + 0.986476i \(0.552410\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.62132 + 26.4626i 0.213760 + 1.56204i
\(288\) 0 0
\(289\) −3.48528 6.03668i −0.205017 0.355099i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.5919 + 8.42463i −0.852467 + 0.492172i −0.861482 0.507787i \(-0.830464\pi\)
0.00901553 + 0.999959i \(0.497130\pi\)
\(294\) 0 0
\(295\) 3.72792 + 2.15232i 0.217048 + 0.125313i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.4853 0.664211
\(300\) 0 0
\(301\) 13.8640 10.7510i 0.799105 0.619679i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.48528 4.30463i 0.142307 0.246483i
\(306\) 0 0
\(307\) 18.4853 1.05501 0.527505 0.849552i \(-0.323127\pi\)
0.527505 + 0.849552i \(0.323127\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.9706 1.30254 0.651271 0.758846i \(-0.274236\pi\)
0.651271 + 0.758846i \(0.274236\pi\)
\(312\) 0 0
\(313\) 1.43488i 0.0811041i 0.999177 + 0.0405520i \(0.0129117\pi\)
−0.999177 + 0.0405520i \(0.987088\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 2.15232i 0.120507i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.16693i 0.176213i
\(324\) 0 0
\(325\) 16.2426 + 9.37769i 0.900980 + 0.520181i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.48528 20.7846i 0.467809 1.14589i
\(330\) 0 0
\(331\) 10.9867i 0.603881i −0.953327 0.301940i \(-0.902366\pi\)
0.953327 0.301940i \(-0.0976344\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.50000 4.33013i −0.136184 0.235877i 0.789865 0.613280i \(-0.210150\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.00000 3.46410i 0.324918 0.187592i
\(342\) 0 0
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.7128i 1.48770i 0.668346 + 0.743851i \(0.267003\pi\)
−0.668346 + 0.743851i \(0.732997\pi\)
\(348\) 0 0
\(349\) 2.37868 + 1.37333i 0.127328 + 0.0735127i 0.562311 0.826926i \(-0.309912\pi\)
−0.434983 + 0.900439i \(0.643246\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.74264 + 3.31552i −0.305650 + 0.176467i −0.644978 0.764201i \(-0.723134\pi\)
0.339328 + 0.940668i \(0.389800\pi\)
\(354\) 0 0
\(355\) 4.75736 8.23999i 0.252494 0.437333i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.37868 + 3.10538i −0.283876 + 0.163896i −0.635177 0.772367i \(-0.719073\pi\)
0.351301 + 0.936263i \(0.385739\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.10660 5.38079i −0.162607 0.281644i
\(366\) 0 0
\(367\) −3.13604 5.43178i −0.163700 0.283537i 0.772493 0.635023i \(-0.219010\pi\)
−0.936193 + 0.351487i \(0.885676\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.01472 + 2.59808i 0.104599 + 0.134885i
\(372\) 0 0
\(373\) −17.8640 + 30.9413i −0.924961 + 1.60208i −0.133337 + 0.991071i \(0.542569\pi\)
−0.791624 + 0.611008i \(0.790764\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.19615i 0.267615i
\(378\) 0 0
\(379\) 2.02922i 0.104234i 0.998641 + 0.0521171i \(0.0165969\pi\)
−0.998641 + 0.0521171i \(0.983403\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.62132 16.6646i 0.491627 0.851522i −0.508327 0.861164i \(-0.669736\pi\)
0.999954 + 0.00964204i \(0.00306920\pi\)
\(384\) 0 0
\(385\) 1.24264 3.04384i 0.0633308 0.155128i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.3787 + 24.9046i 0.729028 + 1.26271i 0.957294 + 0.289115i \(0.0933609\pi\)
−0.228266 + 0.973599i \(0.573306\pi\)
\(390\) 0 0
\(391\) −4.34924 7.53311i −0.219951 0.380966i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.727922 + 1.26080i −0.0366257 + 0.0634376i
\(396\) 0 0
\(397\) −33.1066 + 19.1141i −1.66157 + 0.959309i −0.689608 + 0.724183i \(0.742217\pi\)
−0.971965 + 0.235127i \(0.924450\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.2279 29.8396i 0.860321 1.49012i −0.0112975 0.999936i \(-0.503596\pi\)
0.871619 0.490184i \(-0.163070\pi\)
\(402\) 0 0
\(403\) 14.4853 8.36308i 0.721563 0.416595i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.86396 2.80821i −0.241098 0.139198i
\(408\) 0 0
\(409\) 12.4215i 0.614205i −0.951676 0.307103i \(-0.900641\pi\)
0.951676 0.307103i \(-0.0993595\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 + 14.6969i −0.295241 + 0.723189i
\(414\) 0 0
\(415\) −7.13604 + 4.11999i −0.350294 + 0.202243i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.98528 + 6.90271i 0.194694 + 0.337219i 0.946800 0.321822i \(-0.104295\pi\)
−0.752106 + 0.659042i \(0.770962\pi\)
\(420\) 0 0
\(421\) −6.86396 + 11.8887i −0.334529 + 0.579421i −0.983394 0.181482i \(-0.941911\pi\)
0.648865 + 0.760903i \(0.275244\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.2046i 0.689023i
\(426\) 0 0
\(427\) 16.9706 + 6.92820i 0.821263 + 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.8345 + 19.5344i 1.62975 + 0.940938i 0.984166 + 0.177250i \(0.0567200\pi\)
0.645586 + 0.763688i \(0.276613\pi\)
\(432\) 0 0
\(433\) 13.2621i 0.637334i −0.947867 0.318667i \(-0.896765\pi\)
0.947867 0.318667i \(-0.103235\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.74666i 0.131391i
\(438\) 0 0
\(439\) 26.9706 1.28723 0.643617 0.765347i \(-0.277433\pi\)
0.643617 + 0.765347i \(0.277433\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.95743i 0.425580i −0.977098 0.212790i \(-0.931745\pi\)
0.977098 0.212790i \(-0.0682551\pi\)
\(444\) 0 0
\(445\) 11.7868 0.558748
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −8.74264 + 15.1427i −0.411675 + 0.713042i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 7.34847i 0.140642 0.344502i
\(456\) 0 0
\(457\) −38.9706 −1.82297 −0.911483 0.411338i \(-0.865062\pi\)
−0.911483 + 0.411338i \(0.865062\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.8640 + 13.2005i 1.06488 + 0.614809i 0.926778 0.375609i \(-0.122566\pi\)
0.138102 + 0.990418i \(0.455900\pi\)
\(462\) 0 0
\(463\) 11.3787 6.56948i 0.528812 0.305310i −0.211720 0.977330i \(-0.567907\pi\)
0.740533 + 0.672020i \(0.234573\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.7426 + 20.3389i 0.543385 + 0.941170i 0.998707 + 0.0508429i \(0.0161908\pi\)
−0.455322 + 0.890327i \(0.650476\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.4853 0.528094
\(474\) 0 0
\(475\) −2.24264 + 3.88437i −0.102899 + 0.178227i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.62132 6.27231i −0.165462 0.286589i 0.771357 0.636403i \(-0.219578\pi\)
−0.936819 + 0.349813i \(0.886245\pi\)
\(480\) 0 0
\(481\) −11.7426 6.77962i −0.535418 0.309124i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.37868 4.11999i −0.108010 0.187079i
\(486\) 0 0
\(487\) −11.8934 6.86666i −0.538941 0.311158i 0.205708 0.978613i \(-0.434050\pi\)
−0.744650 + 0.667455i \(0.767383\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.9853 + 7.49706i −0.586018 + 0.338337i −0.763521 0.645783i \(-0.776531\pi\)
0.177504 + 0.984120i \(0.443198\pi\)
\(492\) 0 0
\(493\) −3.40812 + 1.96768i −0.153494 + 0.0886197i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.4853 + 13.2621i 1.45716 + 0.594885i
\(498\) 0 0
\(499\) −29.2279 16.8747i −1.30842 0.755417i −0.326589 0.945167i \(-0.605899\pi\)
−0.981833 + 0.189749i \(0.939233\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.34924 4.24309i −0.325749 0.188072i 0.328203 0.944607i \(-0.393557\pi\)
−0.653952 + 0.756536i \(0.726890\pi\)
\(510\) 0 0
\(511\) 18.1066 14.0410i 0.800989 0.621139i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.28680 + 4.20703i −0.321095 + 0.185384i
\(516\) 0 0
\(517\) 12.7279 7.34847i 0.559773 0.323185i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.50000 4.33013i −0.328581 0.189706i 0.326630 0.945152i \(-0.394087\pi\)
−0.655211 + 0.755446i \(0.727420\pi\)
\(522\) 0 0
\(523\) 0.500000 + 0.866025i 0.0218635 + 0.0378686i 0.876750 0.480946i \(-0.159707\pi\)
−0.854887 + 0.518815i \(0.826373\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.9706 6.33386i −0.477885 0.275907i
\(528\) 0 0
\(529\) −7.72792 13.3852i −0.335997 0.581963i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.1066 + 36.5577i −0.914228 + 1.58349i
\(534\) 0 0
\(535\) −8.27208 −0.357633
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.7426 + 3.01834i 0.505791 + 0.130009i
\(540\) 0 0
\(541\) 22.1066 + 38.2898i 0.950437 + 1.64621i 0.744481 + 0.667644i \(0.232697\pi\)
0.205956 + 0.978561i \(0.433969\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.44113 3.14144i 0.233072 0.134564i
\(546\) 0 0
\(547\) 23.2279 + 13.4106i 0.993154 + 0.573398i 0.906216 0.422816i \(-0.138958\pi\)
0.0869386 + 0.996214i \(0.472292\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.24264 0.0529383
\(552\) 0 0
\(553\) −4.97056 2.02922i −0.211370 0.0862914i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.10660 + 15.7731i −0.385859 + 0.668328i −0.991888 0.127115i \(-0.959428\pi\)
0.606029 + 0.795443i \(0.292762\pi\)
\(558\) 0 0
\(559\) 27.7279 1.17277
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.02944 0.0433856 0.0216928 0.999765i \(-0.493094\pi\)
0.0216928 + 0.999765i \(0.493094\pi\)
\(564\) 0 0
\(565\) 8.23999i 0.346659i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.9706 −0.962976 −0.481488 0.876453i \(-0.659904\pi\)
−0.481488 + 0.876453i \(0.659904\pi\)
\(570\) 0 0
\(571\) 32.2636i 1.35019i −0.737730 0.675096i \(-0.764102\pi\)
0.737730 0.675096i \(-0.235898\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.3196i 0.513761i
\(576\) 0 0
\(577\) −11.9558 6.90271i −0.497728 0.287364i 0.230047 0.973180i \(-0.426112\pi\)
−0.727775 + 0.685816i \(0.759445\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.6213 24.0131i −0.772543 0.996231i
\(582\) 0 0
\(583\) 2.15232i 0.0891399i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.98528 17.2950i 0.412137 0.713842i −0.582986 0.812482i \(-0.698116\pi\)
0.995123 + 0.0986402i \(0.0314493\pi\)
\(588\) 0 0
\(589\) 2.00000 + 3.46410i 0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.2279 6.48244i 0.461075 0.266202i −0.251421 0.967878i \(-0.580898\pi\)
0.712496 + 0.701676i \(0.247564\pi\)
\(594\) 0 0
\(595\) −5.95584 + 0.815039i −0.244166 + 0.0334133i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.52255i 0.307363i −0.988120 0.153682i \(-0.950887\pi\)
0.988120 0.153682i \(-0.0491130\pi\)
\(600\) 0 0
\(601\) 21.9853 + 12.6932i 0.896798 + 0.517767i 0.876160 0.482020i \(-0.160097\pi\)
0.0206383 + 0.999787i \(0.493430\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.97056 + 2.86976i −0.202082 + 0.116672i
\(606\) 0 0
\(607\) 17.3492 30.0498i 0.704184 1.21968i −0.262801 0.964850i \(-0.584646\pi\)
0.966985 0.254833i \(-0.0820203\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 30.7279 17.7408i 1.24312 0.717715i
\(612\) 0 0
\(613\) −1.62132 + 2.80821i −0.0654845 + 0.113423i −0.896909 0.442216i \(-0.854193\pi\)
0.831424 + 0.555638i \(0.187526\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.74264 + 4.75039i 0.110415 + 0.191244i 0.915937 0.401321i \(-0.131449\pi\)
−0.805523 + 0.592565i \(0.798115\pi\)
\(618\) 0 0
\(619\) 1.01472 + 1.75754i 0.0407850 + 0.0706417i 0.885697 0.464263i \(-0.153681\pi\)
−0.844912 + 0.534905i \(0.820347\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.89340 + 43.0656i 0.236114 + 1.72539i
\(624\) 0 0
\(625\) −8.77208 + 15.1937i −0.350883 + 0.607747i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.2692i 0.409460i
\(630\) 0 0
\(631\) 15.2913i 0.608736i 0.952554 + 0.304368i \(0.0984453\pi\)
−0.952554 + 0.304368i \(0.901555\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.213203 + 0.369279i −0.00846072 + 0.0146544i
\(636\) 0 0
\(637\) 28.3492 + 7.28692i 1.12324 + 0.288718i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.4706 + 31.9920i 0.729543 + 1.26361i 0.957076 + 0.289836i \(0.0936007\pi\)
−0.227533 + 0.973770i \(0.573066\pi\)
\(642\) 0 0
\(643\) 12.2279 + 21.1794i 0.482222 + 0.835233i 0.999792 0.0204078i \(-0.00649646\pi\)
−0.517570 + 0.855641i \(0.673163\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.86396 + 13.6208i −0.309164 + 0.535488i −0.978180 0.207760i \(-0.933383\pi\)
0.669016 + 0.743248i \(0.266716\pi\)
\(648\) 0 0
\(649\) −9.00000 + 5.19615i −0.353281 + 0.203967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.6213 + 37.4492i −0.846108 + 1.46550i 0.0385482 + 0.999257i \(0.487727\pi\)
−0.884656 + 0.466245i \(0.845607\pi\)
\(654\) 0 0
\(655\) 10.8640 6.27231i 0.424490 0.245079i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.4706 + 12.3960i 0.836374 + 0.482881i 0.856030 0.516926i \(-0.172924\pi\)
−0.0196558 + 0.999807i \(0.506257\pi\)
\(660\) 0 0
\(661\) 43.2503i 1.68224i 0.540848 + 0.841121i \(0.318104\pi\)
−0.540848 + 0.841121i \(0.681896\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.75736 + 0.717439i 0.0681475 + 0.0278211i
\(666\) 0 0
\(667\) 2.95584 1.70656i 0.114451 0.0660782i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 + 10.3923i 0.231627 + 0.401190i
\(672\) 0 0
\(673\) −11.9853 + 20.7591i −0.461999 + 0.800205i −0.999060 0.0433378i \(-0.986201\pi\)
0.537062 + 0.843543i \(0.319534\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.76874i 0.298577i 0.988794 + 0.149288i \(0.0476983\pi\)
−0.988794 + 0.149288i \(0.952302\pi\)
\(678\) 0 0
\(679\) 13.8640 10.7510i 0.532050 0.412586i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.0147 + 8.09140i 0.536258 + 0.309609i 0.743561 0.668668i \(-0.233135\pi\)
−0.207303 + 0.978277i \(0.566469\pi\)
\(684\) 0 0
\(685\) 6.45695i 0.246707i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.19615i 0.197958i
\(690\) 0 0
\(691\) 23.9411 0.910763 0.455382 0.890296i \(-0.349503\pi\)
0.455382 + 0.890296i \(0.349503\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.32671i 0.353782i
\(696\) 0 0
\(697\) 31.9706 1.21097
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.02944 −0.0388813 −0.0194407 0.999811i \(-0.506189\pi\)
−0.0194407 + 0.999811i \(0.506189\pi\)
\(702\) 0 0
\(703\) 1.62132 2.80821i 0.0611493 0.105914i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.50000 10.9612i −0.0564133 0.412237i
\(708\) 0 0
\(709\) 28.4853 1.06979 0.534894 0.844919i \(-0.320352\pi\)
0.534894 + 0.844919i \(0.320352\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.51472 + 5.49333i 0.356329 + 0.205727i
\(714\) 0 0
\(715\) 4.50000 2.59808i 0.168290 0.0971625i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.6213 + 42.6454i 0.918220 + 1.59040i 0.802117 + 0.597167i \(0.203707\pi\)
0.116103 + 0.993237i \(0.462960\pi\)
\(720\) 0 0
\(721\) −19.0147 24.5204i −0.708145 0.913187i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.57359 0.206998
\(726\) 0 0
\(727\) 21.3492 36.9780i 0.791800 1.37144i −0.133052 0.991109i \(-0.542478\pi\)
0.924852 0.380328i \(-0.124189\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.5000 18.1865i −0.388357 0.672653i
\(732\) 0 0
\(733\) −38.3787 22.1579i −1.41755 0.818422i −0.421466 0.906844i \(-0.638484\pi\)
−0.996083 + 0.0884221i \(0.971818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 27.2574 + 15.7370i 1.00268 + 0.578897i 0.909040 0.416710i \(-0.136817\pi\)
0.0936386 + 0.995606i \(0.470150\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.1360 + 7.58410i −0.481915 + 0.278233i −0.721214 0.692712i \(-0.756416\pi\)
0.239299 + 0.970946i \(0.423082\pi\)
\(744\) 0 0
\(745\) −11.9558 + 6.90271i −0.438028 + 0.252896i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.13604 30.2238i −0.151128 1.10436i
\(750\) 0 0
\(751\) −31.3492 18.0995i −1.14395 0.660460i −0.196544 0.980495i \(-0.562972\pi\)
−0.947406 + 0.320035i \(0.896305\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.0589 −0.620836
\(756\) 0 0
\(757\) 23.9411 0.870155 0.435078 0.900393i \(-0.356721\pi\)
0.435078 + 0.900393i \(0.356721\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.7426 11.9758i −0.751920 0.434121i 0.0744671 0.997223i \(-0.476274\pi\)
−0.826387 + 0.563102i \(0.809608\pi\)
\(762\) 0 0
\(763\) 14.1985 + 18.3096i 0.514020 + 0.662853i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.7279 + 12.5446i −0.784550 + 0.452960i
\(768\) 0 0
\(769\) 25.1985 14.5484i 0.908681 0.524627i 0.0286742 0.999589i \(-0.490871\pi\)
0.880006 + 0.474962i \(0.157538\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.34924 0.778985i −0.0485289 0.0280182i 0.475539 0.879694i \(-0.342253\pi\)
−0.524068 + 0.851676i \(0.675586\pi\)
\(774\) 0 0
\(775\) 8.97056 + 15.5375i 0.322232 + 0.558122i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.74264 5.04757i −0.313238 0.180848i
\(780\) 0 0
\(781\) 11.4853 + 19.8931i 0.410976 + 0.711831i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.727922 1.26080i 0.0259807 0.0449998i
\(786\) 0 0
\(787\) 10.4853 0.373760 0.186880 0.982383i \(-0.440162\pi\)
0.186880 + 0.982383i \(0.440162\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 30.1066 4.11999i 1.07047 0.146490i
\(792\) 0 0
\(793\) 14.4853 + 25.0892i 0.514387 + 0.890945i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.10660 + 3.52565i −0.216307 + 0.124885i −0.604239 0.796803i \(-0.706523\pi\)
0.387932 + 0.921688i \(0.373189\pi\)
\(798\) 0 0
\(799\) −23.2721 13.4361i −0.823307 0.475336i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 15.0000 0.529339
\(804\) 0 0
\(805\) 5.16548 0.706879i 0.182059 0.0249142i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.9853 + 27.6873i −0.562013 + 0.973434i 0.435308 + 0.900282i \(0.356639\pi\)
−0.997321 + 0.0731528i \(0.976694\pi\)
\(810\) 0 0
\(811\) −37.9411 −1.33229 −0.666147 0.745821i \(-0.732057\pi\)
−0.666147 + 0.745821i \(0.732057\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.213203 0.00746819
\(816\) 0 0
\(817\) 6.63103i 0.231990i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −49.4558 −1.72602 −0.863010 0.505186i \(-0.831424\pi\)
−0.863010 + 0.505186i \(0.831424\pi\)
\(822\) 0 0
\(823\) 48.7436i 1.69910i 0.527512 + 0.849548i \(0.323125\pi\)
−0.527512 + 0.849548i \(0.676875\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.6251i 0.751980i 0.926624 + 0.375990i \(0.122697\pi\)
−0.926624 + 0.375990i \(0.877303\pi\)
\(828\) 0 0
\(829\) −18.8345 10.8741i −0.654150 0.377674i 0.135894 0.990723i \(-0.456609\pi\)
−0.790044 + 0.613050i \(0.789943\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.95584 21.3535i −0.206358 0.739854i
\(834\) 0 0
\(835\) 11.2838i 0.390493i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.62132 16.6646i 0.332165 0.575326i −0.650771 0.759274i \(-0.725554\pi\)
0.982936 + 0.183947i \(0.0588876\pi\)
\(840\) 0 0
\(841\) 13.7279 + 23.7775i 0.473377 + 0.819912i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.78680 1.60896i 0.0958687 0.0553498i
\(846\) 0 0
\(847\) −12.9706 16.7262i −0.445674 0.574718i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.90644i 0.305309i
\(852\) 0 0
\(853\) 7.86396 + 4.54026i 0.269257 + 0.155456i 0.628550 0.777769i \(-0.283649\pi\)
−0.359293 + 0.933225i \(0.616982\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.98528 + 2.30090i −0.136135 + 0.0785974i −0.566521 0.824048i \(-0.691711\pi\)
0.430386 + 0.902645i \(0.358377\pi\)
\(858\) 0 0
\(859\) 16.9853 29.4194i 0.579530 1.00378i −0.416003 0.909363i \(-0.636569\pi\)
0.995533 0.0944126i \(-0.0300973\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.59188 + 3.22848i −0.190350 + 0.109899i −0.592146 0.805830i \(-0.701719\pi\)
0.401796 + 0.915729i \(0.368386\pi\)
\(864\) 0 0
\(865\) 3.51472 6.08767i 0.119504 0.206987i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.75736 3.04384i −0.0596143 0.103255i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.6690 + 6.80511i 0.563517 + 0.230055i
\(876\) 0 0
\(877\) 6.34924 10.9972i 0.214399 0.371349i −0.738688 0.674048i \(-0.764554\pi\)
0.953086 + 0.302698i \(0.0978875\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.2195i 0.748594i −0.927309 0.374297i \(-0.877884\pi\)
0.927309 0.374297i \(-0.122116\pi\)
\(882\) 0 0
\(883\) 4.89898i 0.164864i −0.996597 0.0824319i \(-0.973731\pi\)
0.996597 0.0824319i \(-0.0262687\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.8345 37.8185i 0.733132 1.26982i −0.222407 0.974954i \(-0.571391\pi\)
0.955538 0.294867i \(-0.0952754\pi\)
\(888\) 0 0
\(889\) −1.45584 0.594346i −0.0488274 0.0199337i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.24264 + 7.34847i 0.141975 + 0.245907i
\(894\) 0 0
\(895\) −0.408117 0.706879i −0.0136418 0.0236284i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.48528 4.30463i 0.0828888 0.143568i
\(900\) 0 0
\(901\) 3.40812 1.96768i 0.113541 0.0655528i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.75736 + 8.23999i −0.158140 + 0.273906i
\(906\) 0 0
\(907\) −0.985281 + 0.568852i −0.0327157 + 0.0188884i −0.516269 0.856427i \(-0.672679\pi\)
0.483553 + 0.875315i \(0.339346\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.1360 9.31615i −0.534611 0.308658i 0.208281 0.978069i \(-0.433213\pi\)
−0.742892 + 0.669411i \(0.766546\pi\)
\(912\) 0 0
\(913\) 19.8931i 0.658365i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.3492 + 36.5577i 0.936174 + 1.20724i
\(918\) 0 0
\(919\) 4.13604 2.38794i 0.136435 0.0787710i −0.430229 0.902720i \(-0.641567\pi\)
0.566664 + 0.823949i \(0.308234\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 27.7279 + 48.0262i 0.912676 + 1.58080i
\(924\) 0 0
\(925\) 7.27208 12.5956i 0.239104 0.414141i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 47.9031i 1.57165i −0.618450 0.785824i \(-0.712239\pi\)
0.618450 0.785824i \(-0.287761\pi\)
\(930\) 0 0
\(931\) −1.74264 + 6.77962i −0.0571127 + 0.222193i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.40812 1.96768i −0.111457 0.0643499i
\(936\) 0 0
\(937\) 52.4539i 1.71359i −0.515654 0.856797i \(-0.672451\pi\)
0.515654 0.856797i \(-0.327549\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 36.3221i 1.18407i −0.805914 0.592033i \(-0.798326\pi\)
0.805914 0.592033i \(-0.201674\pi\)
\(942\) 0 0
\(943\) −27.7279 −0.902945
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 57.7010i 1.87503i −0.347943 0.937516i \(-0.613120\pi\)
0.347943 0.937516i \(-0.386880\pi\)
\(948\) 0 0
\(949\) 36.2132 1.17553
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.5147 −0.891289 −0.445645 0.895210i \(-0.647025\pi\)
−0.445645 + 0.895210i \(0.647025\pi\)
\(954\) 0 0
\(955\) 6.51472 11.2838i 0.210811 0.365136i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −23.5919 + 3.22848i −0.761822 + 0.104253i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.0294 + 7.52255i 0.419432 + 0.242159i
\(966\) 0 0
\(967\) −32.5919 + 18.8169i −1.04808 + 0.605112i −0.922112 0.386922i \(-0.873538\pi\)
−0.125972 + 0.992034i \(0.540205\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.25736 + 10.8381i 0.200808 + 0.347810i 0.948789 0.315910i \(-0.102310\pi\)
−0.747981 + 0.663720i \(0.768977\pi\)
\(972\) 0 0
\(973\) −34.0772 + 4.66335i −1.09246 + 0.149500i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.9706 0.542936 0.271468 0.962447i \(-0.412491\pi\)
0.271468 + 0.962447i \(0.412491\pi\)
\(978\) 0 0
\(979\) −14.2279 + 24.6435i −0.454726 + 0.787609i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.6213 + 21.8608i 0.402558 + 0.697250i 0.994034 0.109072i \(-0.0347880\pi\)
−0.591476 + 0.806322i \(0.701455\pi\)
\(984\) 0 0
\(985\) 9.00000 + 5.19615i 0.286764 + 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.10660 + 15.7731i 0.289573 + 0.501555i
\(990\) 0 0
\(991\) 25.1360 + 14.5123i 0.798473 + 0.460998i 0.842937 0.538013i \(-0.180825\pi\)
−0.0444642 + 0.999011i \(0.514158\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.2574 + 7.07679i −0.388584 + 0.224349i
\(996\) 0 0
\(997\) −7.86396 + 4.54026i −0.249054 + 0.143791i −0.619331 0.785130i \(-0.712596\pi\)
0.370277 + 0.928921i \(0.379263\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cz.e.2719.2 4
3.2 odd 2 1008.2.cz.e.367.1 yes 4
4.3 odd 2 3024.2.cz.f.2719.2 4
7.5 odd 6 3024.2.bf.e.2287.2 4
9.4 even 3 3024.2.bf.f.1711.1 4
9.5 odd 6 1008.2.bf.e.31.2 4
12.11 even 2 1008.2.cz.f.367.1 yes 4
21.5 even 6 1008.2.bf.f.943.1 yes 4
28.19 even 6 3024.2.bf.f.2287.2 4
36.23 even 6 1008.2.bf.f.31.2 yes 4
36.31 odd 6 3024.2.bf.e.1711.1 4
63.5 even 6 1008.2.cz.f.607.1 yes 4
63.40 odd 6 3024.2.cz.f.1279.2 4
84.47 odd 6 1008.2.bf.e.943.1 yes 4
252.103 even 6 inner 3024.2.cz.e.1279.2 4
252.131 odd 6 1008.2.cz.e.607.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.e.31.2 4 9.5 odd 6
1008.2.bf.e.943.1 yes 4 84.47 odd 6
1008.2.bf.f.31.2 yes 4 36.23 even 6
1008.2.bf.f.943.1 yes 4 21.5 even 6
1008.2.cz.e.367.1 yes 4 3.2 odd 2
1008.2.cz.e.607.1 yes 4 252.131 odd 6
1008.2.cz.f.367.1 yes 4 12.11 even 2
1008.2.cz.f.607.1 yes 4 63.5 even 6
3024.2.bf.e.1711.1 4 36.31 odd 6
3024.2.bf.e.2287.2 4 7.5 odd 6
3024.2.bf.f.1711.1 4 9.4 even 3
3024.2.bf.f.2287.2 4 28.19 even 6
3024.2.cz.e.1279.2 4 252.103 even 6 inner
3024.2.cz.e.2719.2 4 1.1 even 1 trivial
3024.2.cz.f.1279.2 4 63.40 odd 6
3024.2.cz.f.2719.2 4 4.3 odd 2