L(s) = 1 | + (−0.626 + 1.61i)3-s + 3.55·5-s + (1.49 − 2.18i)7-s + (−2.21 − 2.02i)9-s + 3.02i·11-s + (0.888 + 0.513i)13-s + (−2.22 + 5.73i)15-s + (0.809 − 1.40i)17-s + (7.12 − 4.11i)19-s + (2.58 + 3.78i)21-s − 3.35i·23-s + 7.61·25-s + (4.65 − 2.30i)27-s + (−3.70 + 2.13i)29-s + (−5.18 + 2.99i)31-s + ⋯ |
L(s) = 1 | + (−0.361 + 0.932i)3-s + 1.58·5-s + (0.564 − 0.825i)7-s + (−0.738 − 0.674i)9-s + 0.911i·11-s + (0.246 + 0.142i)13-s + (−0.574 + 1.48i)15-s + (0.196 − 0.339i)17-s + (1.63 − 0.943i)19-s + (0.565 + 0.824i)21-s − 0.700i·23-s + 1.52·25-s + (0.895 − 0.444i)27-s + (−0.687 + 0.397i)29-s + (−0.931 + 0.537i)31-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(0.861−0.507i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(0.861−0.507i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
0.861−0.507i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), 0.861−0.507i)
|
Particular Values
L(1) |
≈ |
2.036622762 |
L(21) |
≈ |
2.036622762 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.626−1.61i)T |
| 7 | 1+(−1.49+2.18i)T |
good | 5 | 1−3.55T+5T2 |
| 11 | 1−3.02iT−11T2 |
| 13 | 1+(−0.888−0.513i)T+(6.5+11.2i)T2 |
| 17 | 1+(−0.809+1.40i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−7.12+4.11i)T+(9.5−16.4i)T2 |
| 23 | 1+3.35iT−23T2 |
| 29 | 1+(3.70−2.13i)T+(14.5−25.1i)T2 |
| 31 | 1+(5.18−2.99i)T+(15.5−26.8i)T2 |
| 37 | 1+(−2.92−5.06i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.0472−0.0817i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.05+5.29i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2.57+4.45i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−2.76−1.59i)T+(26.5+45.8i)T2 |
| 59 | 1+(−4.42−7.65i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.06+2.34i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.187+0.325i)T+(−33.5+58.0i)T2 |
| 71 | 1−13.9iT−71T2 |
| 73 | 1+(−1.13−0.655i)T+(36.5+63.2i)T2 |
| 79 | 1+(−0.462+0.800i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−5.43−9.40i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−2.35−4.07i)T+(−44.5+77.0i)T2 |
| 97 | 1+(13.3−7.69i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.970531546865623461832351475885, −9.485775627572941408939272213876, −8.718380331813144041113136169569, −7.31380088536268794857238753859, −6.61764437472785222142549869416, −5.35632388466856561355816537011, −5.08926485825118211695136217192, −3.93011918137925250048204219136, −2.63034892983714063230346651007, −1.25976103730187911795230654962,
1.31041207747980465225106562648, 2.10044019997712020117493553285, 3.25727086151644181599991334074, 5.20674788385239550242618139238, 5.82758001471901384647835643448, 6.04693906362197400018403753152, 7.43643440257349938449637387201, 8.151216642740362321773645640024, 9.132408062495751576379362171697, 9.750625620028818004796342152567