[N,k,chi] = [1008,2,Mod(689,1008)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 5, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1008.689");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 1008 Z ) × \left(\mathbb{Z}/1008\mathbb{Z}\right)^\times ( Z / 1 0 0 8 Z ) × .
n n n
127 127 1 2 7
577 577 5 7 7
757 757 7 5 7
785 785 7 8 5
χ ( n ) \chi(n) χ ( n )
1 1 1
1 + β 7 1 + \beta_{7} 1 + β 7
1 1 1
− β 7 -\beta_{7} − β 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 8 − 24 T 5 6 + 12 T 5 5 + 153 T 5 4 − 162 T 5 3 − 117 T 5 2 + 126 T 5 + 9 T_{5}^{8} - 24T_{5}^{6} + 12T_{5}^{5} + 153T_{5}^{4} - 162T_{5}^{3} - 117T_{5}^{2} + 126T_{5} + 9 T 5 8 − 2 4 T 5 6 + 1 2 T 5 5 + 1 5 3 T 5 4 − 1 6 2 T 5 3 − 1 1 7 T 5 2 + 1 2 6 T 5 + 9
T5^8 - 24*T5^6 + 12*T5^5 + 153*T5^4 - 162*T5^3 - 117*T5^2 + 126*T5 + 9
acting on S 2 n e w ( 1008 , [ χ ] ) S_{2}^{\mathrm{new}}(1008, [\chi]) S 2 n e w ( 1 0 0 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 + 3 T 14 + ⋯ + 6561 T^{16} + 3 T^{14} + \cdots + 6561 T 1 6 + 3 T 1 4 + ⋯ + 6 5 6 1
T^16 + 3*T^14 - 12*T^13 - 9*T^12 - 54*T^11 + 45*T^10 + 18*T^9 + 441*T^8 + 54*T^7 + 405*T^6 - 1458*T^5 - 729*T^4 - 2916*T^3 + 2187*T^2 + 6561
5 5 5
( T 8 − 24 T 6 + 12 T 5 + ⋯ + 9 ) 2 (T^{8} - 24 T^{6} + 12 T^{5} + \cdots + 9)^{2} ( T 8 − 2 4 T 6 + 1 2 T 5 + ⋯ + 9 ) 2
(T^8 - 24*T^6 + 12*T^5 + 153*T^4 - 162*T^3 - 117*T^2 + 126*T + 9)^2
7 7 7
T 16 + 2 T 15 + ⋯ + 5764801 T^{16} + 2 T^{15} + \cdots + 5764801 T 1 6 + 2 T 1 5 + ⋯ + 5 7 6 4 8 0 1
T^16 + 2*T^15 - 3*T^14 - 26*T^13 - 67*T^12 + 84*T^11 + 355*T^10 - 40*T^9 - 675*T^8 - 280*T^7 + 17395*T^6 + 28812*T^5 - 160867*T^4 - 436982*T^3 - 352947*T^2 + 1647086*T + 5764801
11 11 1 1
T 16 + 108 T 14 + ⋯ + 61732449 T^{16} + 108 T^{14} + \cdots + 61732449 T 1 6 + 1 0 8 T 1 4 + ⋯ + 6 1 7 3 2 4 4 9
T^16 + 108*T^14 + 4734*T^12 + 109350*T^10 + 1445607*T^8 + 11056014*T^6 + 46570707*T^4 + 93782934*T^2 + 61732449
13 13 1 3
T 16 + ⋯ + 390971529 T^{16} + \cdots + 390971529 T 1 6 + ⋯ + 3 9 0 9 7 1 5 2 9
T^16 + 6*T^15 - 57*T^14 - 414*T^13 + 2682*T^12 + 19584*T^11 - 40167*T^10 - 423144*T^9 + 452916*T^8 + 6581682*T^7 + 2433294*T^6 - 46095318*T^5 - 17730819*T^4 + 226594584*T^3 + 88818120*T^2 - 543480678*T + 390971529
17 17 1 7
T 16 − 18 T 15 + ⋯ + 56070144 T^{16} - 18 T^{15} + \cdots + 56070144 T 1 6 − 1 8 T 1 5 + ⋯ + 5 6 0 7 0 1 4 4
T^16 - 18*T^15 + 231*T^14 - 1794*T^13 + 11493*T^12 - 53892*T^11 + 241380*T^10 - 875952*T^9 + 3161232*T^8 - 8227008*T^7 + 19253376*T^6 - 31774464*T^5 + 53021952*T^4 - 66023424*T^3 + 91570176*T^2 - 73322496*T + 56070144
19 19 1 9
T 16 − 72 T 14 + ⋯ + 9199089 T^{16} - 72 T^{14} + \cdots + 9199089 T 1 6 − 7 2 T 1 4 + ⋯ + 9 1 9 9 0 8 9
T^16 - 72*T^14 + 4167*T^12 + 10116*T^11 - 55782*T^10 - 162594*T^9 + 634680*T^8 + 1418796*T^7 - 3302019*T^6 - 6237810*T^5 + 14697288*T^4 + 9389520*T^3 - 11629251*T^2 - 6551280*T + 9199089
23 23 2 3
T 16 + ⋯ + 187388721 T^{16} + \cdots + 187388721 T 1 6 + ⋯ + 1 8 7 3 8 8 7 2 1
T^16 + 144*T^14 + 7542*T^12 + 193266*T^10 + 2711151*T^8 + 21565278*T^6 + 95262075*T^4 + 213429330*T^2 + 187388721
29 29 2 9
T 16 − 6 T 15 + ⋯ + 1108809 T^{16} - 6 T^{15} + \cdots + 1108809 T 1 6 − 6 T 1 5 + ⋯ + 1 1 0 8 8 0 9
T^16 - 6*T^15 - 36*T^14 + 288*T^13 + 1197*T^12 - 7938*T^11 - 19278*T^10 + 121986*T^9 + 299376*T^8 - 912708*T^7 - 1095687*T^6 + 3639168*T^5 + 3174066*T^4 - 9950850*T^3 + 2880279*T^2 + 4264650*T + 1108809
31 31 3 1
T 16 + 6 T 15 + ⋯ + 65610000 T^{16} + 6 T^{15} + \cdots + 65610000 T 1 6 + 6 T 1 5 + ⋯ + 6 5 6 1 0 0 0 0
T^16 + 6*T^15 - 84*T^14 - 576*T^13 + 6705*T^12 + 13608*T^11 - 196938*T^10 - 178524*T^9 + 4847445*T^8 - 10540368*T^7 - 6430023*T^6 + 36006768*T^5 + 12764061*T^4 - 80525340*T^3 - 14652900*T^2 + 91854000*T + 65610000
37 37 3 7
T 16 + ⋯ + 32746159681 T^{16} + \cdots + 32746159681 T 1 6 + ⋯ + 3 2 7 4 6 1 5 9 6 8 1
T^16 + 2*T^15 + 180*T^14 - 212*T^13 + 20726*T^12 - 40410*T^11 + 1458136*T^10 - 4587118*T^9 + 74228751*T^8 - 226939114*T^7 + 2287630168*T^6 - 7527670110*T^5 + 46677522614*T^4 - 97465928012*T^3 + 184692416508*T^2 - 85008385594*T + 32746159681
41 41 4 1
T 16 − 6 T 15 + ⋯ + 81 T^{16} - 6 T^{15} + \cdots + 81 T 1 6 − 6 T 1 5 + ⋯ + 8 1
T^16 - 6*T^15 + 105*T^14 + 210*T^13 + 4086*T^12 + 10656*T^11 + 114903*T^10 + 435366*T^9 + 1500462*T^8 + 2659284*T^7 + 3629772*T^6 + 2008098*T^5 + 789021*T^4 + 157140*T^3 + 22518*T^2 + 1620*T + 81
43 43 4 3
T 16 + ⋯ + 2999643361 T^{16} + \cdots + 2999643361 T 1 6 + ⋯ + 2 9 9 9 6 4 3 3 6 1
T^16 - 2*T^15 + 135*T^14 + 86*T^13 + 11744*T^12 + 12744*T^11 + 594199*T^10 + 1079260*T^9 + 21475854*T^8 + 31678138*T^7 + 414160000*T^6 + 541864944*T^5 + 5436205979*T^4 + 4349128328*T^3 + 7799247270*T^2 - 3327326288*T + 2999643361
47 47 4 7
T 16 + ⋯ + 588203099136 T^{16} + \cdots + 588203099136 T 1 6 + ⋯ + 5 8 8 2 0 3 0 9 9 1 3 6
T^16 - 18*T^15 + 321*T^14 - 3354*T^13 + 38619*T^12 - 335628*T^11 + 2972988*T^10 - 20639754*T^9 + 140431797*T^8 - 797520384*T^7 + 4357561698*T^6 - 19327462218*T^5 + 74568403089*T^4 - 211321078200*T^3 + 470997221472*T^2 - 638729369856*T + 588203099136
53 53 5 3
T 16 + ⋯ + 36759242529 T^{16} + \cdots + 36759242529 T 1 6 + ⋯ + 3 6 7 5 9 2 4 2 5 2 9
T^16 - 36*T^15 + 342*T^14 + 3240*T^13 - 59697*T^12 - 312498*T^11 + 9260244*T^10 - 18378090*T^9 - 432814590*T^8 + 1559379114*T^7 + 18102553515*T^6 - 151911504432*T^5 + 467177028516*T^4 - 623279673504*T^3 + 216276115095*T^2 + 192322120608*T + 36759242529
59 59 5 9
T 16 + ⋯ + 216504090000 T^{16} + \cdots + 216504090000 T 1 6 + ⋯ + 2 1 6 5 0 4 0 9 0 0 0 0
T^16 + 30*T^15 + 672*T^14 + 9348*T^13 + 113769*T^12 + 1072944*T^11 + 9838458*T^10 + 72646884*T^9 + 493635321*T^8 + 2348646408*T^7 + 9371184921*T^6 + 20166063156*T^5 + 52632256221*T^4 + 90386999280*T^3 + 199283579100*T^2 + 210725064000*T + 216504090000
61 61 6 1
T 16 + ⋯ + 547560000 T^{16} + \cdots + 547560000 T 1 6 + ⋯ + 5 4 7 5 6 0 0 0 0
T^16 + 60*T^15 + 1548*T^14 + 20880*T^13 + 135891*T^12 + 67572*T^11 - 3676878*T^10 + 7743330*T^9 + 418107141*T^8 + 3086545284*T^7 + 9700556031*T^6 + 7525757628*T^5 - 25483947759*T^4 - 23542982100*T^3 + 86065788600*T^2 - 11814660000*T + 547560000
67 67 6 7
T 16 + ⋯ + 2603856784 T^{16} + \cdots + 2603856784 T 1 6 + ⋯ + 2 6 0 3 8 5 6 7 8 4
T^16 + 14*T^15 + 297*T^14 + 526*T^13 + 18443*T^12 - 38232*T^11 + 1101268*T^10 - 3752662*T^9 + 34299369*T^8 - 125698780*T^7 + 776010586*T^6 - 2376076410*T^5 + 7750191281*T^4 - 10814306060*T^3 + 14528452572*T^2 + 5000131664*T + 2603856784
71 71 7 1
T 16 + 486 T 14 + ⋯ + 65610000 T^{16} + 486 T^{14} + \cdots + 65610000 T 1 6 + 4 8 6 T 1 4 + ⋯ + 6 5 6 1 0 0 0 0
T^16 + 486*T^14 + 77553*T^12 + 4631418*T^10 + 118814850*T^8 + 1363509936*T^6 + 5897814849*T^4 + 1520839800*T^2 + 65610000
73 73 7 3
T 16 − 150 T 14 + ⋯ + 71115489 T^{16} - 150 T^{14} + \cdots + 71115489 T 1 6 − 1 5 0 T 1 4 + ⋯ + 7 1 1 1 5 4 8 9
T^16 - 150*T^14 + 18909*T^12 - 99126*T^11 - 293184*T^10 + 2724732*T^9 + 5074506*T^8 - 52748334*T^7 + 2268459*T^6 + 381956796*T^5 + 184027950*T^4 - 1251964674*T^3 + 804430197*T^2 + 461301966*T + 71115489
79 79 7 9
T 16 + ⋯ + 970422010000 T^{16} + \cdots + 970422010000 T 1 6 + ⋯ + 9 7 0 4 2 2 0 1 0 0 0 0
T^16 - 16*T^15 + 405*T^14 - 2228*T^13 + 50093*T^12 - 147744*T^11 + 4930570*T^10 - 3465268*T^9 + 235975761*T^8 - 420147388*T^7 + 7055668672*T^6 - 13192279974*T^5 + 140363929769*T^4 - 339772788080*T^3 + 1444878963900*T^2 - 1233975664000*T + 970422010000
83 83 8 3
T 16 + ⋯ + 953512641 T^{16} + \cdots + 953512641 T 1 6 + ⋯ + 9 5 3 5 1 2 6 4 1
T^16 + 177*T^14 + 312*T^13 + 22680*T^12 + 35334*T^11 + 1367865*T^10 + 1501128*T^9 + 59460768*T^8 + 16891146*T^7 + 898947882*T^6 - 2738647692*T^5 + 8139710007*T^4 - 10462495572*T^3 + 10746004968*T^2 - 3606173136*T + 953512641
89 89 8 9
T 16 + ⋯ + 131145120363321 T^{16} + \cdots + 131145120363321 T 1 6 + ⋯ + 1 3 1 1 4 5 1 2 0 3 6 3 3 2 1
T^16 - 24*T^15 + 702*T^14 - 9180*T^13 + 187029*T^12 - 2265570*T^11 + 32872068*T^10 - 313712028*T^9 + 3371130738*T^8 - 29227238586*T^7 + 232008422067*T^6 - 1393795430352*T^5 + 6794512511634*T^4 - 24192458322894*T^3 + 66081140272737*T^2 - 115458464232270*T + 131145120363321
97 97 9 7
T 16 + ⋯ + 9120206721024 T^{16} + \cdots + 9120206721024 T 1 6 + ⋯ + 9 1 2 0 2 0 6 7 2 1 0 2 4
T^16 + 6*T^15 - 381*T^14 - 2358*T^13 + 102717*T^12 + 354204*T^11 - 15309036*T^10 - 28723248*T^9 + 1709674848*T^8 - 1664083008*T^7 - 99905635008*T^6 + 297673761024*T^5 + 3933195148800*T^4 - 29552832820224*T^3 + 71879395230720*T^2 - 42337728663552*T + 9120206721024
show more
show less