Properties

Label 1008.2.df.c
Level 10081008
Weight 22
Character orbit 1008.df
Analytic conductor 8.0498.049
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(689,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1008.df (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.048920523758.04892052375
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 34 3^{4}
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3β11q5+(β10β8+β4++1)q7+(β14+β13β11+1)q9+(β15β10β9++1)q11++(β153β14+2β13+2)q99+O(q100) q - \beta_{3} q^{3} - \beta_{11} q^{5} + ( - \beta_{10} - \beta_{8} + \beta_{4} + \cdots + 1) q^{7} + ( - \beta_{14} + \beta_{13} - \beta_{11} + \cdots - 1) q^{9} + (\beta_{15} - \beta_{10} - \beta_{9} + \cdots + 1) q^{11}+ \cdots + (\beta_{15} - 3 \beta_{14} + 2 \beta_{13} + \cdots - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q76q96q13+18q15+18q1718q21+16q25+36q27+6q296q31+18q33+30q352q37+30q39+6q41+2q43+12q45+18q47+18q99+O(q100) 16 q - 2 q^{7} - 6 q^{9} - 6 q^{13} + 18 q^{15} + 18 q^{17} - 18 q^{21} + 16 q^{25} + 36 q^{27} + 6 q^{29} - 6 q^{31} + 18 q^{33} + 30 q^{35} - 2 q^{37} + 30 q^{39} + 6 q^{41} + 2 q^{43} + 12 q^{45} + 18 q^{47}+ \cdots - 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 : Copy content Toggle raw display

β1\beta_{1}== (154ν15+1325ν143608ν13+224ν12+22478ν1155022ν10++1285227)/47385 ( - 154 \nu^{15} + 1325 \nu^{14} - 3608 \nu^{13} + 224 \nu^{12} + 22478 \nu^{11} - 55022 \nu^{10} + \cdots + 1285227 ) / 47385 Copy content Toggle raw display
β2\beta_{2}== (1342ν159134ν14+18833ν13+17821ν12164858ν11+301448ν10+6445089)/142155 ( 1342 \nu^{15} - 9134 \nu^{14} + 18833 \nu^{13} + 17821 \nu^{12} - 164858 \nu^{11} + 301448 \nu^{10} + \cdots - 6445089 ) / 142155 Copy content Toggle raw display
β3\beta_{3}== (2846ν1522369ν14+55246ν13+17972ν12402586ν11+20783061)/142155 ( 2846 \nu^{15} - 22369 \nu^{14} + 55246 \nu^{13} + 17972 \nu^{12} - 402586 \nu^{11} + \cdots - 20783061 ) / 142155 Copy content Toggle raw display
β4\beta_{4}== (2782ν1515918ν14+26947ν13+42629ν12270897ν11+425335ν10+7405182)/47385 ( 2782 \nu^{15} - 15918 \nu^{14} + 26947 \nu^{13} + 42629 \nu^{12} - 270897 \nu^{11} + 425335 \nu^{10} + \cdots - 7405182 ) / 47385 Copy content Toggle raw display
β5\beta_{5}== (5666ν15+35256ν1467793ν1374626ν12+609708ν11++21264930)/47385 ( - 5666 \nu^{15} + 35256 \nu^{14} - 67793 \nu^{13} - 74626 \nu^{12} + 609708 \nu^{11} + \cdots + 21264930 ) / 47385 Copy content Toggle raw display
β6\beta_{6}== (432ν15+2816ν145740ν135150ν12+49010ν1190874ν10++1853118)/3645 ( - 432 \nu^{15} + 2816 \nu^{14} - 5740 \nu^{13} - 5150 \nu^{12} + 49010 \nu^{11} - 90874 \nu^{10} + \cdots + 1853118 ) / 3645 Copy content Toggle raw display
β7\beta_{7}== (4120ν1525571ν14+48788ν13+55006ν12441224ν11+771188ν10+14963454)/28431 ( 4120 \nu^{15} - 25571 \nu^{14} + 48788 \nu^{13} + 55006 \nu^{12} - 441224 \nu^{11} + 771188 \nu^{10} + \cdots - 14963454 ) / 28431 Copy content Toggle raw display
β8\beta_{8}== (20555ν15129232ν14+250807ν13+267434ν122233957ν11+77795964)/142155 ( 20555 \nu^{15} - 129232 \nu^{14} + 250807 \nu^{13} + 267434 \nu^{12} - 2233957 \nu^{11} + \cdots - 77795964 ) / 142155 Copy content Toggle raw display
β9\beta_{9}== (21860ν15+133486ν14249901ν13298607ν12+2298061ν11++75541167)/142155 ( - 21860 \nu^{15} + 133486 \nu^{14} - 249901 \nu^{13} - 298607 \nu^{12} + 2298061 \nu^{11} + \cdots + 75541167 ) / 142155 Copy content Toggle raw display
β10\beta_{10}== (2015ν1512538ν14+24088ν13+26576ν12216643ν11+381184ν10+7453296)/10935 ( 2015 \nu^{15} - 12538 \nu^{14} + 24088 \nu^{13} + 26576 \nu^{12} - 216643 \nu^{11} + 381184 \nu^{10} + \cdots - 7453296 ) / 10935 Copy content Toggle raw display
β11\beta_{11}== (29357ν15190006ν14+382390ν13+360905ν123304405ν11+122535423)/142155 ( 29357 \nu^{15} - 190006 \nu^{14} + 382390 \nu^{13} + 360905 \nu^{12} - 3304405 \nu^{11} + \cdots - 122535423 ) / 142155 Copy content Toggle raw display
β12\beta_{12}== (11745ν15+73063ν14139508ν13157621ν12+1262908ν11++42448941)/47385 ( - 11745 \nu^{15} + 73063 \nu^{14} - 139508 \nu^{13} - 157621 \nu^{12} + 1262908 \nu^{11} + \cdots + 42448941 ) / 47385 Copy content Toggle raw display
β13\beta_{13}== (45758ν15+290392ν14571483ν13583571ν12+5039353ν11++181431333)/142155 ( - 45758 \nu^{15} + 290392 \nu^{14} - 571483 \nu^{13} - 583571 \nu^{12} + 5039353 \nu^{11} + \cdots + 181431333 ) / 142155 Copy content Toggle raw display
β14\beta_{14}== (17267ν15+108242ν14209241ν13227007ν12+1874096ν11++65023155)/47385 ( - 17267 \nu^{15} + 108242 \nu^{14} - 209241 \nu^{13} - 227007 \nu^{12} + 1874096 \nu^{11} + \cdots + 65023155 ) / 47385 Copy content Toggle raw display
β15\beta_{15}== (56402ν15+348301ν14661000ν13757115ν12+6004885ν11++200862828)/142155 ( - 56402 \nu^{15} + 348301 \nu^{14} - 661000 \nu^{13} - 757115 \nu^{12} + 6004885 \nu^{11} + \cdots + 200862828 ) / 142155 Copy content Toggle raw display
ν\nu== (β14β10+β9β7+2β4+β32β2+1)/3 ( -\beta_{14} - \beta_{10} + \beta_{9} - \beta_{7} + 2\beta_{4} + \beta_{3} - 2\beta_{2} + 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β15β12β10β9+2β8β72β6β5++2)/3 ( 2 \beta_{15} - \beta_{12} - \beta_{10} - \beta_{9} + 2 \beta_{8} - \beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots + 2 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β15+2β142β134β12+β112β10β9+3)/3 ( 2 \beta_{15} + 2 \beta_{14} - 2 \beta_{13} - 4 \beta_{12} + \beta_{11} - 2 \beta_{10} - \beta_{9} + \cdots - 3 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (3β15+10β144β136β12+5β11+4β103β9++11)/3 ( 3 \beta_{15} + 10 \beta_{14} - 4 \beta_{13} - 6 \beta_{12} + 5 \beta_{11} + 4 \beta_{10} - 3 \beta_{9} + \cdots + 11 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (3β152β146β136β12+3β118β104β9+7)/3 ( - 3 \beta_{15} - 2 \beta_{14} - 6 \beta_{13} - 6 \beta_{12} + 3 \beta_{11} - 8 \beta_{10} - 4 \beta_{9} + \cdots - 7 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (7β153β14+4β134β122β1110β10+7β9+31)/3 ( - 7 \beta_{15} - 3 \beta_{14} + 4 \beta_{13} - 4 \beta_{12} - 2 \beta_{11} - 10 \beta_{10} + 7 \beta_{9} + \cdots - 31 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (6β1535β14+β1318β1238β1159β10+β9+85)/3 ( - 6 \beta_{15} - 35 \beta_{14} + \beta_{13} - 18 \beta_{12} - 38 \beta_{11} - 59 \beta_{10} + \beta_{9} + \cdots - 85 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (10β15+35β1418β1340β1248β11+7β10+36)/3 ( - 10 \beta_{15} + 35 \beta_{14} - 18 \beta_{13} - 40 \beta_{12} - 48 \beta_{11} + 7 \beta_{10} + \cdots - 36 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (32β14126β1372β1290β1146β1020β9++64)/3 ( 32 \beta_{14} - 126 \beta_{13} - 72 \beta_{12} - 90 \beta_{11} - 46 \beta_{10} - 20 \beta_{9} + \cdots + 64 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (90β15+171β14167β1336β125β11+153β10+225)/3 ( - 90 \beta_{15} + 171 \beta_{14} - 167 \beta_{13} - 36 \beta_{12} - 5 \beta_{11} + 153 \beta_{10} + \cdots - 225 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (100β15+83β14141β13113β1290β1127β10+325)/3 ( 100 \beta_{15} + 83 \beta_{14} - 141 \beta_{13} - 113 \beta_{12} - 90 \beta_{11} - 27 \beta_{10} + \cdots - 325 ) / 3 Copy content Toggle raw display
ν12\nu^{12}== (251β15+97β14+298β13319β12128β11+867β10+845)/3 ( 251 \beta_{15} + 97 \beta_{14} + 298 \beta_{13} - 319 \beta_{12} - 128 \beta_{11} + 867 \beta_{10} + \cdots - 845 ) / 3 Copy content Toggle raw display
ν13\nu^{13}== (1440β15170β14+597β131254β12999β11+1288β10++1901)/3 ( 1440 \beta_{15} - 170 \beta_{14} + 597 \beta_{13} - 1254 \beta_{12} - 999 \beta_{11} + 1288 \beta_{10} + \cdots + 1901 ) / 3 Copy content Toggle raw display
ν14\nu^{14}== (835β15918β14+882β131877β121842β11+2872β10+1013)/3 ( 835 \beta_{15} - 918 \beta_{14} + 882 \beta_{13} - 1877 \beta_{12} - 1842 \beta_{11} + 2872 \beta_{10} + \cdots - 1013 ) / 3 Copy content Toggle raw display
ν15\nu^{15}== (1012β15+838β14+431β132534β123259β11+1145β10++561)/3 ( 1012 \beta_{15} + 838 \beta_{14} + 431 \beta_{13} - 2534 \beta_{12} - 3259 \beta_{11} + 1145 \beta_{10} + \cdots + 561 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1008Z)×\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times.

nn 127127 577577 757757 785785
χ(n)\chi(n) 11 1+β71 + \beta_{7} 11 β7-\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
689.1
0.765614 + 1.55365i
0.320287 1.70218i
1.27866 + 1.16834i
1.58110 0.707199i
1.71298 0.256290i
−1.68301 0.409224i
−1.70672 + 0.295146i
1.73109 + 0.0577511i
0.765614 1.55365i
0.320287 + 1.70218i
1.27866 1.16834i
1.58110 + 0.707199i
1.71298 + 0.256290i
−1.68301 + 0.409224i
−1.70672 0.295146i
1.73109 0.0577511i
0 −1.47073 0.914855i 0 −3.64414 0 −2.62749 + 0.310282i 0 1.32608 + 2.69100i 0
689.2 0 −1.33318 + 1.10572i 0 −0.0676069 0 2.64192 + 0.142361i 0 0.554753 2.94826i 0
689.3 0 −0.626615 + 1.61473i 0 3.55225 0 1.49384 2.18368i 0 −2.21471 2.02363i 0
689.4 0 −0.361565 1.69389i 0 −0.900258 0 −1.05755 2.42520i 0 −2.73854 + 1.22490i 0
689.5 0 0.128499 + 1.72728i 0 −3.61932 0 −0.266972 + 2.63225i 0 −2.96698 + 0.443907i 0
689.6 0 0.206076 1.71975i 0 1.42985 0 2.43739 + 1.02913i 0 −2.91507 0.708796i 0
689.7 0 1.72571 0.148116i 0 0.967324 0 −2.40137 + 1.11060i 0 2.95612 0.511208i 0
689.8 0 1.73181 + 0.0288796i 0 2.28190 0 −1.21977 2.34780i 0 2.99833 + 0.100028i 0
929.1 0 −1.47073 + 0.914855i 0 −3.64414 0 −2.62749 0.310282i 0 1.32608 2.69100i 0
929.2 0 −1.33318 1.10572i 0 −0.0676069 0 2.64192 0.142361i 0 0.554753 + 2.94826i 0
929.3 0 −0.626615 1.61473i 0 3.55225 0 1.49384 + 2.18368i 0 −2.21471 + 2.02363i 0
929.4 0 −0.361565 + 1.69389i 0 −0.900258 0 −1.05755 + 2.42520i 0 −2.73854 1.22490i 0
929.5 0 0.128499 1.72728i 0 −3.61932 0 −0.266972 2.63225i 0 −2.96698 0.443907i 0
929.6 0 0.206076 + 1.71975i 0 1.42985 0 2.43739 1.02913i 0 −2.91507 + 0.708796i 0
929.7 0 1.72571 + 0.148116i 0 0.967324 0 −2.40137 1.11060i 0 2.95612 + 0.511208i 0
929.8 0 1.73181 0.0288796i 0 2.28190 0 −1.21977 + 2.34780i 0 2.99833 0.100028i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 689.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.df.c 16
3.b odd 2 1 3024.2.df.c 16
4.b odd 2 1 126.2.t.a yes 16
7.d odd 6 1 1008.2.ca.c 16
9.c even 3 1 3024.2.ca.c 16
9.d odd 6 1 1008.2.ca.c 16
12.b even 2 1 378.2.t.a 16
21.g even 6 1 3024.2.ca.c 16
28.d even 2 1 882.2.t.a 16
28.f even 6 1 126.2.l.a 16
28.f even 6 1 882.2.m.b 16
28.g odd 6 1 882.2.l.b 16
28.g odd 6 1 882.2.m.a 16
36.f odd 6 1 378.2.l.a 16
36.f odd 6 1 1134.2.k.b 16
36.h even 6 1 126.2.l.a 16
36.h even 6 1 1134.2.k.a 16
63.k odd 6 1 3024.2.df.c 16
63.s even 6 1 inner 1008.2.df.c 16
84.h odd 2 1 2646.2.t.b 16
84.j odd 6 1 378.2.l.a 16
84.j odd 6 1 2646.2.m.b 16
84.n even 6 1 2646.2.l.a 16
84.n even 6 1 2646.2.m.a 16
252.n even 6 1 378.2.t.a 16
252.o even 6 1 882.2.t.a 16
252.r odd 6 1 882.2.m.a 16
252.r odd 6 1 1134.2.k.b 16
252.s odd 6 1 882.2.l.b 16
252.u odd 6 1 2646.2.m.b 16
252.bb even 6 1 882.2.m.b 16
252.bi even 6 1 2646.2.l.a 16
252.bj even 6 1 1134.2.k.a 16
252.bj even 6 1 2646.2.m.a 16
252.bl odd 6 1 2646.2.t.b 16
252.bn odd 6 1 126.2.t.a yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.l.a 16 28.f even 6 1
126.2.l.a 16 36.h even 6 1
126.2.t.a yes 16 4.b odd 2 1
126.2.t.a yes 16 252.bn odd 6 1
378.2.l.a 16 36.f odd 6 1
378.2.l.a 16 84.j odd 6 1
378.2.t.a 16 12.b even 2 1
378.2.t.a 16 252.n even 6 1
882.2.l.b 16 28.g odd 6 1
882.2.l.b 16 252.s odd 6 1
882.2.m.a 16 28.g odd 6 1
882.2.m.a 16 252.r odd 6 1
882.2.m.b 16 28.f even 6 1
882.2.m.b 16 252.bb even 6 1
882.2.t.a 16 28.d even 2 1
882.2.t.a 16 252.o even 6 1
1008.2.ca.c 16 7.d odd 6 1
1008.2.ca.c 16 9.d odd 6 1
1008.2.df.c 16 1.a even 1 1 trivial
1008.2.df.c 16 63.s even 6 1 inner
1134.2.k.a 16 36.h even 6 1
1134.2.k.a 16 252.bj even 6 1
1134.2.k.b 16 36.f odd 6 1
1134.2.k.b 16 252.r odd 6 1
2646.2.l.a 16 84.n even 6 1
2646.2.l.a 16 252.bi even 6 1
2646.2.m.a 16 84.n even 6 1
2646.2.m.a 16 252.bj even 6 1
2646.2.m.b 16 84.j odd 6 1
2646.2.m.b 16 252.u odd 6 1
2646.2.t.b 16 84.h odd 2 1
2646.2.t.b 16 252.bl odd 6 1
3024.2.ca.c 16 9.c even 3 1
3024.2.ca.c 16 21.g even 6 1
3024.2.df.c 16 3.b odd 2 1
3024.2.df.c 16 63.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5824T56+12T55+153T54162T53117T52+126T5+9 T_{5}^{8} - 24T_{5}^{6} + 12T_{5}^{5} + 153T_{5}^{4} - 162T_{5}^{3} - 117T_{5}^{2} + 126T_{5} + 9 acting on S2new(1008,[χ])S_{2}^{\mathrm{new}}(1008, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16+3T14++6561 T^{16} + 3 T^{14} + \cdots + 6561 Copy content Toggle raw display
55 (T824T6+12T5++9)2 (T^{8} - 24 T^{6} + 12 T^{5} + \cdots + 9)^{2} Copy content Toggle raw display
77 T16+2T15++5764801 T^{16} + 2 T^{15} + \cdots + 5764801 Copy content Toggle raw display
1111 T16+108T14++61732449 T^{16} + 108 T^{14} + \cdots + 61732449 Copy content Toggle raw display
1313 T16++390971529 T^{16} + \cdots + 390971529 Copy content Toggle raw display
1717 T1618T15++56070144 T^{16} - 18 T^{15} + \cdots + 56070144 Copy content Toggle raw display
1919 T1672T14++9199089 T^{16} - 72 T^{14} + \cdots + 9199089 Copy content Toggle raw display
2323 T16++187388721 T^{16} + \cdots + 187388721 Copy content Toggle raw display
2929 T166T15++1108809 T^{16} - 6 T^{15} + \cdots + 1108809 Copy content Toggle raw display
3131 T16+6T15++65610000 T^{16} + 6 T^{15} + \cdots + 65610000 Copy content Toggle raw display
3737 T16++32746159681 T^{16} + \cdots + 32746159681 Copy content Toggle raw display
4141 T166T15++81 T^{16} - 6 T^{15} + \cdots + 81 Copy content Toggle raw display
4343 T16++2999643361 T^{16} + \cdots + 2999643361 Copy content Toggle raw display
4747 T16++588203099136 T^{16} + \cdots + 588203099136 Copy content Toggle raw display
5353 T16++36759242529 T^{16} + \cdots + 36759242529 Copy content Toggle raw display
5959 T16++216504090000 T^{16} + \cdots + 216504090000 Copy content Toggle raw display
6161 T16++547560000 T^{16} + \cdots + 547560000 Copy content Toggle raw display
6767 T16++2603856784 T^{16} + \cdots + 2603856784 Copy content Toggle raw display
7171 T16+486T14++65610000 T^{16} + 486 T^{14} + \cdots + 65610000 Copy content Toggle raw display
7373 T16150T14++71115489 T^{16} - 150 T^{14} + \cdots + 71115489 Copy content Toggle raw display
7979 T16++970422010000 T^{16} + \cdots + 970422010000 Copy content Toggle raw display
8383 T16++953512641 T^{16} + \cdots + 953512641 Copy content Toggle raw display
8989 T16++131145120363321 T^{16} + \cdots + 131145120363321 Copy content Toggle raw display
9797 T16++9120206721024 T^{16} + \cdots + 9120206721024 Copy content Toggle raw display
show more
show less