L(s) = 1 | + (−0.361 − 1.69i)3-s − 0.900·5-s + (−1.05 − 2.42i)7-s + (−2.73 + 1.22i)9-s − 3.12i·11-s + (1.99 + 1.14i)13-s + (0.325 + 1.52i)15-s + (2.57 − 4.46i)17-s + (−2.38 + 1.37i)19-s + (−3.72 + 2.66i)21-s + 1.71i·23-s − 4.18·25-s + (3.06 + 4.19i)27-s + (−1.85 + 1.07i)29-s + (−8.66 + 5.00i)31-s + ⋯ |
L(s) = 1 | + (−0.208 − 0.977i)3-s − 0.402·5-s + (−0.399 − 0.916i)7-s + (−0.912 + 0.408i)9-s − 0.943i·11-s + (0.552 + 0.318i)13-s + (0.0840 + 0.393i)15-s + (0.624 − 1.08i)17-s + (−0.546 + 0.315i)19-s + (−0.813 + 0.582i)21-s + 0.357i·23-s − 0.837·25-s + (0.589 + 0.807i)27-s + (−0.344 + 0.198i)29-s + (−1.55 + 0.898i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5153835733\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5153835733\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.361 + 1.69i)T \) |
| 7 | \( 1 + (1.05 + 2.42i)T \) |
good | 5 | \( 1 + 0.900T + 5T^{2} \) |
| 11 | \( 1 + 3.12iT - 11T^{2} \) |
| 13 | \( 1 + (-1.99 - 1.14i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.57 + 4.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.38 - 1.37i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 1.71iT - 23T^{2} \) |
| 29 | \( 1 + (1.85 - 1.07i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (8.66 - 5.00i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.73 + 8.20i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.22 - 2.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.273 - 0.473i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.93 - 6.80i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-12.0 - 6.97i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.99 + 6.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.28 - 3.62i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.83 - 3.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.1iT - 71T^{2} \) |
| 73 | \( 1 + (10.9 + 6.30i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.27 - 5.67i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.184 - 0.319i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.00 + 10.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.86 - 5.12i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.361878628526690691575509727989, −8.547907985556225255109058202091, −7.57977423379297751333823031328, −7.14263233392248998292521887672, −6.14190501449364163457916112533, −5.37339286353388065649732234214, −3.92721297073681447843942498742, −3.11831593765259594234852821768, −1.53610559016826828270135673626, −0.23933500260935710587043960458,
2.13118556786636357034697960012, 3.47062289842439872762669292604, 4.14736531046957261348150548124, 5.33617902262053264922019114746, 5.93375734454920076460044367318, 6.99461109955420921091335101068, 8.261939397379523378202859274011, 8.755022169346718595949994346832, 9.794712805095502600927746717001, 10.22675373540734404039090758433