L(s) = 1 | + (−0.361 − 1.69i)3-s − 0.900·5-s + (−1.05 − 2.42i)7-s + (−2.73 + 1.22i)9-s − 3.12i·11-s + (1.99 + 1.14i)13-s + (0.325 + 1.52i)15-s + (2.57 − 4.46i)17-s + (−2.38 + 1.37i)19-s + (−3.72 + 2.66i)21-s + 1.71i·23-s − 4.18·25-s + (3.06 + 4.19i)27-s + (−1.85 + 1.07i)29-s + (−8.66 + 5.00i)31-s + ⋯ |
L(s) = 1 | + (−0.208 − 0.977i)3-s − 0.402·5-s + (−0.399 − 0.916i)7-s + (−0.912 + 0.408i)9-s − 0.943i·11-s + (0.552 + 0.318i)13-s + (0.0840 + 0.393i)15-s + (0.624 − 1.08i)17-s + (−0.546 + 0.315i)19-s + (−0.813 + 0.582i)21-s + 0.357i·23-s − 0.837·25-s + (0.589 + 0.807i)27-s + (−0.344 + 0.198i)29-s + (−1.55 + 0.898i)31-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(−0.905−0.423i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(−0.905−0.423i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
−0.905−0.423i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), −0.905−0.423i)
|
Particular Values
L(1) |
≈ |
0.5153835733 |
L(21) |
≈ |
0.5153835733 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.361+1.69i)T |
| 7 | 1+(1.05+2.42i)T |
good | 5 | 1+0.900T+5T2 |
| 11 | 1+3.12iT−11T2 |
| 13 | 1+(−1.99−1.14i)T+(6.5+11.2i)T2 |
| 17 | 1+(−2.57+4.46i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.38−1.37i)T+(9.5−16.4i)T2 |
| 23 | 1−1.71iT−23T2 |
| 29 | 1+(1.85−1.07i)T+(14.5−25.1i)T2 |
| 31 | 1+(8.66−5.00i)T+(15.5−26.8i)T2 |
| 37 | 1+(4.73+8.20i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.22−2.11i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.273−0.473i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.93−6.80i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−12.0−6.97i)T+(26.5+45.8i)T2 |
| 59 | 1+(3.99+6.91i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.28−3.62i)T+(30.5+52.8i)T2 |
| 67 | 1+(−1.83−3.17i)T+(−33.5+58.0i)T2 |
| 71 | 1+14.1iT−71T2 |
| 73 | 1+(10.9+6.30i)T+(36.5+63.2i)T2 |
| 79 | 1+(3.27−5.67i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−0.184−0.319i)T+(−41.5+71.8i)T2 |
| 89 | 1+(6.00+10.3i)T+(−44.5+77.0i)T2 |
| 97 | 1+(8.86−5.12i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.361878628526690691575509727989, −8.547907985556225255109058202091, −7.57977423379297751333823031328, −7.14263233392248998292521887672, −6.14190501449364163457916112533, −5.37339286353388065649732234214, −3.92721297073681447843942498742, −3.11831593765259594234852821768, −1.53610559016826828270135673626, −0.23933500260935710587043960458,
2.13118556786636357034697960012, 3.47062289842439872762669292604, 4.14736531046957261348150548124, 5.33617902262053264922019114746, 5.93375734454920076460044367318, 6.99461109955420921091335101068, 8.261939397379523378202859274011, 8.755022169346718595949994346832, 9.794712805095502600927746717001, 10.22675373540734404039090758433