Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [882,2,Mod(293,882)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("882.293");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 882.m (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 126) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
293.1 |
|
−0.866025 | + | 0.500000i | −1.62418 | − | 0.601709i | 0.500000 | − | 0.866025i | 0.0338034 | − | 0.0585493i | 1.70743 | − | 0.290993i | 0 | 1.00000i | 2.27589 | + | 1.95456i | 0.0676069i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.2 | −0.866025 | + | 0.500000i | 0.0569233 | − | 1.73112i | 0.500000 | − | 0.866025i | 1.82207 | − | 3.15592i | 0.816261 | + | 1.52765i | 0 | 1.00000i | −2.99352 | − | 0.197082i | 3.64414i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.3 | −0.866025 | + | 0.500000i | 0.840895 | + | 1.51423i | 0.500000 | − | 0.866025i | −1.14095 | + | 1.97618i | −1.48535 | − | 0.890915i | 0 | 1.00000i | −1.58579 | + | 2.54662i | − | 2.28190i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.4 | −0.866025 | + | 0.500000i | 1.59238 | − | 0.681407i | 0.500000 | − | 0.866025i | −0.714925 | + | 1.23829i | −1.03834 | + | 1.38631i | 0 | 1.00000i | 2.07137 | − | 2.17012i | − | 1.42985i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.5 | 0.866025 | − | 0.500000i | −1.71170 | + | 0.264701i | 0.500000 | − | 0.866025i | −1.77612 | + | 3.07634i | −1.35003 | + | 1.08509i | 0 | − | 1.00000i | 2.85987 | − | 0.906179i | 3.55225i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.6 | 0.866025 | − | 0.500000i | −1.43162 | + | 0.974922i | 0.500000 | − | 0.866025i | 1.80966 | − | 3.13442i | −0.752355 | + | 1.56012i | 0 | − | 1.00000i | 1.09905 | − | 2.79143i | − | 3.61932i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
293.7 | 0.866025 | − | 0.500000i | 0.991125 | + | 1.42045i | 0.500000 | − | 0.866025i | −0.483662 | + | 0.837727i | 1.56856 | + | 0.734581i | 0 | − | 1.00000i | −1.03534 | + | 2.81568i | 0.967324i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
293.8 | 0.866025 | − | 0.500000i | 1.28617 | − | 1.16007i | 0.500000 | − | 0.866025i | 0.450129 | − | 0.779646i | 0.533822 | − | 1.64774i | 0 | − | 1.00000i | 0.308473 | − | 2.98410i | − | 0.900258i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
587.1 | −0.866025 | − | 0.500000i | −1.62418 | + | 0.601709i | 0.500000 | + | 0.866025i | 0.0338034 | + | 0.0585493i | 1.70743 | + | 0.290993i | 0 | − | 1.00000i | 2.27589 | − | 1.95456i | − | 0.0676069i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
587.2 | −0.866025 | − | 0.500000i | 0.0569233 | + | 1.73112i | 0.500000 | + | 0.866025i | 1.82207 | + | 3.15592i | 0.816261 | − | 1.52765i | 0 | − | 1.00000i | −2.99352 | + | 0.197082i | − | 3.64414i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
587.3 | −0.866025 | − | 0.500000i | 0.840895 | − | 1.51423i | 0.500000 | + | 0.866025i | −1.14095 | − | 1.97618i | −1.48535 | + | 0.890915i | 0 | − | 1.00000i | −1.58579 | − | 2.54662i | 2.28190i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
587.4 | −0.866025 | − | 0.500000i | 1.59238 | + | 0.681407i | 0.500000 | + | 0.866025i | −0.714925 | − | 1.23829i | −1.03834 | − | 1.38631i | 0 | − | 1.00000i | 2.07137 | + | 2.17012i | 1.42985i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
587.5 | 0.866025 | + | 0.500000i | −1.71170 | − | 0.264701i | 0.500000 | + | 0.866025i | −1.77612 | − | 3.07634i | −1.35003 | − | 1.08509i | 0 | 1.00000i | 2.85987 | + | 0.906179i | − | 3.55225i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
587.6 | 0.866025 | + | 0.500000i | −1.43162 | − | 0.974922i | 0.500000 | + | 0.866025i | 1.80966 | + | 3.13442i | −0.752355 | − | 1.56012i | 0 | 1.00000i | 1.09905 | + | 2.79143i | 3.61932i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
587.7 | 0.866025 | + | 0.500000i | 0.991125 | − | 1.42045i | 0.500000 | + | 0.866025i | −0.483662 | − | 0.837727i | 1.56856 | − | 0.734581i | 0 | 1.00000i | −1.03534 | − | 2.81568i | − | 0.967324i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
587.8 | 0.866025 | + | 0.500000i | 1.28617 | + | 1.16007i | 0.500000 | + | 0.866025i | 0.450129 | + | 0.779646i | 0.533822 | + | 1.64774i | 0 | 1.00000i | 0.308473 | + | 2.98410i | 0.900258i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.o | even | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .