Properties

Label 882.2.m.a
Level 882882
Weight 22
Character orbit 882.m
Analytic conductor 7.0437.043
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(293,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 882.m (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.042805458287.04280545828
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β14q3β7q4+(β15+β10++β5)q5+(β9+β4)q6+β6q8+(β8+β6β4++1)q9++(2β15β14+5β1)q99+O(q100) q + \beta_1 q^{2} + \beta_{14} q^{3} - \beta_{7} q^{4} + ( - \beta_{15} + \beta_{10} + \cdots + \beta_{5}) q^{5} + (\beta_{9} + \beta_{4}) q^{6} + \beta_{6} q^{8} + ( - \beta_{8} + \beta_{6} - \beta_{4} + \cdots + 1) q^{9}+ \cdots + ( - 2 \beta_{15} - \beta_{14} + \cdots - 5 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q4+6q912q116q1318q158q1636q17+6q23+6q248q25+24q2636q27+6q29+18q306q3118q33+4q37+42q39++18q99+O(q100) 16 q + 8 q^{4} + 6 q^{9} - 12 q^{11} - 6 q^{13} - 18 q^{15} - 8 q^{16} - 36 q^{17} + 6 q^{23} + 6 q^{24} - 8 q^{25} + 24 q^{26} - 36 q^{27} + 6 q^{29} + 18 q^{30} - 6 q^{31} - 18 q^{33} + 4 q^{37} + 42 q^{39}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 : Copy content Toggle raw display

β1\beta_{1}== (50ν151352ν14+6827ν137676ν1227422ν11+107246ν10+2825604)/142155 ( - 50 \nu^{15} - 1352 \nu^{14} + 6827 \nu^{13} - 7676 \nu^{12} - 27422 \nu^{11} + 107246 \nu^{10} + \cdots - 2825604 ) / 142155 Copy content Toggle raw display
β2\beta_{2}== (1292ν1510486ν14+25660ν13+10145ν12192280ν11+408694ν10+9270693)/142155 ( 1292 \nu^{15} - 10486 \nu^{14} + 25660 \nu^{13} + 10145 \nu^{12} - 192280 \nu^{11} + 408694 \nu^{10} + \cdots - 9270693 ) / 142155 Copy content Toggle raw display
β3\beta_{3}== (2846ν1522369ν14+55246ν13+17972ν12402586ν11+20783061)/142155 ( 2846 \nu^{15} - 22369 \nu^{14} + 55246 \nu^{13} + 17972 \nu^{12} - 402586 \nu^{11} + \cdots - 20783061 ) / 142155 Copy content Toggle raw display
β4\beta_{4}== (2782ν15+15918ν1426947ν1342629ν12+270897ν11++7405182)/47385 ( - 2782 \nu^{15} + 15918 \nu^{14} - 26947 \nu^{13} - 42629 \nu^{12} + 270897 \nu^{11} + \cdots + 7405182 ) / 47385 Copy content Toggle raw display
β5\beta_{5}== (3648ν15+23120ν1445376ν1347012ν12+401996ν11++14281839)/47385 ( - 3648 \nu^{15} + 23120 \nu^{14} - 45376 \nu^{13} - 47012 \nu^{12} + 401996 \nu^{11} + \cdots + 14281839 ) / 47385 Copy content Toggle raw display
β6\beta_{6}== (16948ν15+107120ν14210206ν13216202ν12+1856546ν11++66620394)/142155 ( - 16948 \nu^{15} + 107120 \nu^{14} - 210206 \nu^{13} - 216202 \nu^{12} + 1856546 \nu^{11} + \cdots + 66620394 ) / 142155 Copy content Toggle raw display
β7\beta_{7}== (4120ν15+25571ν1448788ν1355006ν12+441224ν11++14935023)/28431 ( - 4120 \nu^{15} + 25571 \nu^{14} - 48788 \nu^{13} - 55006 \nu^{12} + 441224 \nu^{11} + \cdots + 14935023 ) / 28431 Copy content Toggle raw display
β8\beta_{8}== (24706ν15155855ν14+305147ν13+316579ν122700647ν11+96324228)/142155 ( 24706 \nu^{15} - 155855 \nu^{14} + 305147 \nu^{13} + 316579 \nu^{12} - 2700647 \nu^{11} + \cdots - 96324228 ) / 142155 Copy content Toggle raw display
β9\beta_{9}== (2015ν1512538ν14+24088ν13+26576ν12216643ν11+381184ν10+7453296)/10935 ( 2015 \nu^{15} - 12538 \nu^{14} + 24088 \nu^{13} + 26576 \nu^{12} - 216643 \nu^{11} + 381184 \nu^{10} + \cdots - 7453296 ) / 10935 Copy content Toggle raw display
β10\beta_{10}== (26777ν15+172141ν14345205ν13329150ν12+2992915ν11++112005018)/142155 ( - 26777 \nu^{15} + 172141 \nu^{14} - 345205 \nu^{13} - 329150 \nu^{12} + 2992915 \nu^{11} + \cdots + 112005018 ) / 142155 Copy content Toggle raw display
β11\beta_{11}== (32006ν15201190ν14+390892ν13+415394ν123479542ν11+121376313)/142155 ( 32006 \nu^{15} - 201190 \nu^{14} + 390892 \nu^{13} + 415394 \nu^{12} - 3479542 \nu^{11} + \cdots - 121376313 ) / 142155 Copy content Toggle raw display
β12\beta_{12}== (10990ν15+68842ν14133062ν13143724ν12+1190062ν11++41433444)/47385 ( - 10990 \nu^{15} + 68842 \nu^{14} - 133062 \nu^{13} - 143724 \nu^{12} + 1190062 \nu^{11} + \cdots + 41433444 ) / 47385 Copy content Toggle raw display
β13\beta_{13}== (35897ν15+219337ν14409846ν13492632ν12+3774151ν11++122931270)/142155 ( - 35897 \nu^{15} + 219337 \nu^{14} - 409846 \nu^{13} - 492632 \nu^{12} + 3774151 \nu^{11} + \cdots + 122931270 ) / 142155 Copy content Toggle raw display
β14\beta_{14}== (14807ν15+92828ν14179757ν13193044ν12+1605257ν11++55960227)/47385 ( - 14807 \nu^{15} + 92828 \nu^{14} - 179757 \nu^{13} - 193044 \nu^{12} + 1605257 \nu^{11} + \cdots + 55960227 ) / 47385 Copy content Toggle raw display
β15\beta_{15}== (68699ν15+433198ν14844756ν13889547ν12+7506256ν11++264515463)/142155 ( - 68699 \nu^{15} + 433198 \nu^{14} - 844756 \nu^{13} - 889547 \nu^{12} + 7506256 \nu^{11} + \cdots + 264515463 ) / 142155 Copy content Toggle raw display
ν\nu== (β15β9β8+β7+β62β4+2β32β2+β1+2)/3 ( -\beta_{15} - \beta_{9} - \beta_{8} + \beta_{7} + \beta_{6} - 2\beta_{4} + 2\beta_{3} - 2\beta_{2} + \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β15+4β14+β132β12+2β11β10β9++3)/3 ( - \beta_{15} + 4 \beta_{14} + \beta_{13} - 2 \beta_{12} + 2 \beta_{11} - \beta_{10} - \beta_{9} + \cdots + 3 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (3β15β14+5β13+2β12+β11+β103β8+4)/3 ( - 3 \beta_{15} - \beta_{14} + 5 \beta_{13} + 2 \beta_{12} + \beta_{11} + \beta_{10} - 3 \beta_{8} + \cdots - 4 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (β15+2β14+11β134β12+7β11+4β10+8β9++7)/3 ( - \beta_{15} + 2 \beta_{14} + 11 \beta_{13} - 4 \beta_{12} + 7 \beta_{11} + 4 \beta_{10} + 8 \beta_{9} + \cdots + 7 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (11β156β14+9β13+12β11+6β102β9+β8++10)/3 ( - 11 \beta_{15} - 6 \beta_{14} + 9 \beta_{13} + 12 \beta_{11} + 6 \beta_{10} - 2 \beta_{9} + \beta_{8} + \cdots + 10 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (5β15+26β14+2β1331β12+28β11+13β10++15)/3 ( - 5 \beta_{15} + 26 \beta_{14} + 2 \beta_{13} - 31 \beta_{12} + 28 \beta_{11} + 13 \beta_{10} + \cdots + 15 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (15β15+16β1420β13+16β12+29β1113β10+11)/3 ( - 15 \beta_{15} + 16 \beta_{14} - 20 \beta_{13} + 16 \beta_{12} + 29 \beta_{11} - 13 \beta_{10} + \cdots - 11 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (43β15+28β148β13+10β12+44β1116β10+25β9+1)/3 ( 43 \beta_{15} + 28 \beta_{14} - 8 \beta_{13} + 10 \beta_{12} + 44 \beta_{11} - 16 \beta_{10} + 25 \beta_{9} + \cdots - 1 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (50β1512β1418β13+102β12+102β11144β10++134)/3 ( 50 \beta_{15} - 12 \beta_{14} - 18 \beta_{13} + 102 \beta_{12} + 102 \beta_{11} - 144 \beta_{10} + \cdots + 134 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (140β15+139β14+31β13224β12+95β1146β10+109β1)/3 ( 140 \beta_{15} + 139 \beta_{14} + 31 \beta_{13} - 224 \beta_{12} + 95 \beta_{11} - 46 \beta_{10} + \cdots - 109 \beta_1 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (60β15+503β14+23β13313β12+133β11218β10+193)/3 ( 60 \beta_{15} + 503 \beta_{14} + 23 \beta_{13} - 313 \beta_{12} + 133 \beta_{11} - 218 \beta_{10} + \cdots - 193 ) / 3 Copy content Toggle raw display
ν12\nu^{12}== (94β15+722β14+191β13343β12182β11+238β10+1112)/3 ( - 94 \beta_{15} + 722 \beta_{14} + 191 \beta_{13} - 343 \beta_{12} - 182 \beta_{11} + 238 \beta_{10} + \cdots - 1112 ) / 3 Copy content Toggle raw display
ν13\nu^{13}== (425β15+1353β14+255β13+1086β12+1068β11588β10++727)/3 ( - 425 \beta_{15} + 1353 \beta_{14} + 255 \beta_{13} + 1086 \beta_{12} + 1068 \beta_{11} - 588 \beta_{10} + \cdots + 727 ) / 3 Copy content Toggle raw display
ν14\nu^{14}== (953β15+446β14+35β13+2231β12+1294β11+82β10++1896)/3 ( - 953 \beta_{15} + 446 \beta_{14} + 35 \beta_{13} + 2231 \beta_{12} + 1294 \beta_{11} + 82 \beta_{10} + \cdots + 1896 ) / 3 Copy content Toggle raw display
ν15\nu^{15}== (1563β15+1963β14725β13+2308β12+3086β111306β10++6694)/3 ( 1563 \beta_{15} + 1963 \beta_{14} - 725 \beta_{13} + 2308 \beta_{12} + 3086 \beta_{11} - 1306 \beta_{10} + \cdots + 6694 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) 1-1 β7-\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
293.1
0.320287 + 1.70218i
0.765614 1.55365i
1.73109 0.0577511i
−1.68301 + 0.409224i
1.27866 1.16834i
1.71298 + 0.256290i
−1.70672 0.295146i
1.58110 + 0.707199i
0.320287 1.70218i
0.765614 + 1.55365i
1.73109 + 0.0577511i
−1.68301 0.409224i
1.27866 + 1.16834i
1.71298 0.256290i
−1.70672 + 0.295146i
1.58110 0.707199i
−0.866025 + 0.500000i −1.62418 0.601709i 0.500000 0.866025i 0.0338034 0.0585493i 1.70743 0.290993i 0 1.00000i 2.27589 + 1.95456i 0.0676069i
293.2 −0.866025 + 0.500000i 0.0569233 1.73112i 0.500000 0.866025i 1.82207 3.15592i 0.816261 + 1.52765i 0 1.00000i −2.99352 0.197082i 3.64414i
293.3 −0.866025 + 0.500000i 0.840895 + 1.51423i 0.500000 0.866025i −1.14095 + 1.97618i −1.48535 0.890915i 0 1.00000i −1.58579 + 2.54662i 2.28190i
293.4 −0.866025 + 0.500000i 1.59238 0.681407i 0.500000 0.866025i −0.714925 + 1.23829i −1.03834 + 1.38631i 0 1.00000i 2.07137 2.17012i 1.42985i
293.5 0.866025 0.500000i −1.71170 + 0.264701i 0.500000 0.866025i −1.77612 + 3.07634i −1.35003 + 1.08509i 0 1.00000i 2.85987 0.906179i 3.55225i
293.6 0.866025 0.500000i −1.43162 + 0.974922i 0.500000 0.866025i 1.80966 3.13442i −0.752355 + 1.56012i 0 1.00000i 1.09905 2.79143i 3.61932i
293.7 0.866025 0.500000i 0.991125 + 1.42045i 0.500000 0.866025i −0.483662 + 0.837727i 1.56856 + 0.734581i 0 1.00000i −1.03534 + 2.81568i 0.967324i
293.8 0.866025 0.500000i 1.28617 1.16007i 0.500000 0.866025i 0.450129 0.779646i 0.533822 1.64774i 0 1.00000i 0.308473 2.98410i 0.900258i
587.1 −0.866025 0.500000i −1.62418 + 0.601709i 0.500000 + 0.866025i 0.0338034 + 0.0585493i 1.70743 + 0.290993i 0 1.00000i 2.27589 1.95456i 0.0676069i
587.2 −0.866025 0.500000i 0.0569233 + 1.73112i 0.500000 + 0.866025i 1.82207 + 3.15592i 0.816261 1.52765i 0 1.00000i −2.99352 + 0.197082i 3.64414i
587.3 −0.866025 0.500000i 0.840895 1.51423i 0.500000 + 0.866025i −1.14095 1.97618i −1.48535 + 0.890915i 0 1.00000i −1.58579 2.54662i 2.28190i
587.4 −0.866025 0.500000i 1.59238 + 0.681407i 0.500000 + 0.866025i −0.714925 1.23829i −1.03834 1.38631i 0 1.00000i 2.07137 + 2.17012i 1.42985i
587.5 0.866025 + 0.500000i −1.71170 0.264701i 0.500000 + 0.866025i −1.77612 3.07634i −1.35003 1.08509i 0 1.00000i 2.85987 + 0.906179i 3.55225i
587.6 0.866025 + 0.500000i −1.43162 0.974922i 0.500000 + 0.866025i 1.80966 + 3.13442i −0.752355 1.56012i 0 1.00000i 1.09905 + 2.79143i 3.61932i
587.7 0.866025 + 0.500000i 0.991125 1.42045i 0.500000 + 0.866025i −0.483662 0.837727i 1.56856 0.734581i 0 1.00000i −1.03534 2.81568i 0.967324i
587.8 0.866025 + 0.500000i 1.28617 + 1.16007i 0.500000 + 0.866025i 0.450129 + 0.779646i 0.533822 + 1.64774i 0 1.00000i 0.308473 + 2.98410i 0.900258i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 293.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.m.a 16
3.b odd 2 1 2646.2.m.a 16
7.b odd 2 1 882.2.m.b 16
7.c even 3 1 126.2.t.a yes 16
7.c even 3 1 882.2.l.b 16
7.d odd 6 1 126.2.l.a 16
7.d odd 6 1 882.2.t.a 16
9.c even 3 1 2646.2.m.b 16
9.d odd 6 1 882.2.m.b 16
21.c even 2 1 2646.2.m.b 16
21.g even 6 1 378.2.l.a 16
21.g even 6 1 2646.2.t.b 16
21.h odd 6 1 378.2.t.a 16
21.h odd 6 1 2646.2.l.a 16
28.f even 6 1 1008.2.ca.c 16
28.g odd 6 1 1008.2.df.c 16
63.g even 3 1 378.2.l.a 16
63.h even 3 1 1134.2.k.b 16
63.h even 3 1 2646.2.t.b 16
63.i even 6 1 126.2.t.a yes 16
63.j odd 6 1 882.2.t.a 16
63.j odd 6 1 1134.2.k.a 16
63.k odd 6 1 1134.2.k.a 16
63.k odd 6 1 2646.2.l.a 16
63.l odd 6 1 2646.2.m.a 16
63.n odd 6 1 126.2.l.a 16
63.o even 6 1 inner 882.2.m.a 16
63.s even 6 1 882.2.l.b 16
63.s even 6 1 1134.2.k.b 16
63.t odd 6 1 378.2.t.a 16
84.j odd 6 1 3024.2.ca.c 16
84.n even 6 1 3024.2.df.c 16
252.o even 6 1 1008.2.ca.c 16
252.r odd 6 1 1008.2.df.c 16
252.bj even 6 1 3024.2.df.c 16
252.bl odd 6 1 3024.2.ca.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.l.a 16 7.d odd 6 1
126.2.l.a 16 63.n odd 6 1
126.2.t.a yes 16 7.c even 3 1
126.2.t.a yes 16 63.i even 6 1
378.2.l.a 16 21.g even 6 1
378.2.l.a 16 63.g even 3 1
378.2.t.a 16 21.h odd 6 1
378.2.t.a 16 63.t odd 6 1
882.2.l.b 16 7.c even 3 1
882.2.l.b 16 63.s even 6 1
882.2.m.a 16 1.a even 1 1 trivial
882.2.m.a 16 63.o even 6 1 inner
882.2.m.b 16 7.b odd 2 1
882.2.m.b 16 9.d odd 6 1
882.2.t.a 16 7.d odd 6 1
882.2.t.a 16 63.j odd 6 1
1008.2.ca.c 16 28.f even 6 1
1008.2.ca.c 16 252.o even 6 1
1008.2.df.c 16 28.g odd 6 1
1008.2.df.c 16 252.r odd 6 1
1134.2.k.a 16 63.j odd 6 1
1134.2.k.a 16 63.k odd 6 1
1134.2.k.b 16 63.h even 3 1
1134.2.k.b 16 63.s even 6 1
2646.2.l.a 16 21.h odd 6 1
2646.2.l.a 16 63.k odd 6 1
2646.2.m.a 16 3.b odd 2 1
2646.2.m.a 16 63.l odd 6 1
2646.2.m.b 16 9.c even 3 1
2646.2.m.b 16 21.c even 2 1
2646.2.t.b 16 21.g even 6 1
2646.2.t.b 16 63.h even 3 1
3024.2.ca.c 16 84.j odd 6 1
3024.2.ca.c 16 252.bl odd 6 1
3024.2.df.c 16 84.n even 6 1
3024.2.df.c 16 252.bj even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516+24T514+24T513+423T512+450T511+3582T510++81 T_{5}^{16} + 24 T_{5}^{14} + 24 T_{5}^{13} + 423 T_{5}^{12} + 450 T_{5}^{11} + 3582 T_{5}^{10} + \cdots + 81 acting on S2new(882,[χ])S_{2}^{\mathrm{new}}(882, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
33 T163T14++6561 T^{16} - 3 T^{14} + \cdots + 6561 Copy content Toggle raw display
55 T16+24T14++81 T^{16} + 24 T^{14} + \cdots + 81 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16+12T15++61732449 T^{16} + 12 T^{15} + \cdots + 61732449 Copy content Toggle raw display
1313 T16++390971529 T^{16} + \cdots + 390971529 Copy content Toggle raw display
1717 (T8+18T7++7488)2 (T^{8} + 18 T^{7} + \cdots + 7488)^{2} Copy content Toggle raw display
1919 T16+144T14++9199089 T^{16} + 144 T^{14} + \cdots + 9199089 Copy content Toggle raw display
2323 T16++187388721 T^{16} + \cdots + 187388721 Copy content Toggle raw display
2929 T166T15++1108809 T^{16} - 6 T^{15} + \cdots + 1108809 Copy content Toggle raw display
3131 T16+6T15++65610000 T^{16} + 6 T^{15} + \cdots + 65610000 Copy content Toggle raw display
3737 (T82T7+180959)2 (T^{8} - 2 T^{7} + \cdots - 180959)^{2} Copy content Toggle raw display
4141 T166T15++81 T^{16} - 6 T^{15} + \cdots + 81 Copy content Toggle raw display
4343 T16++2999643361 T^{16} + \cdots + 2999643361 Copy content Toggle raw display
4747 T16++588203099136 T^{16} + \cdots + 588203099136 Copy content Toggle raw display
5353 T16++36759242529 T^{16} + \cdots + 36759242529 Copy content Toggle raw display
5959 T16++216504090000 T^{16} + \cdots + 216504090000 Copy content Toggle raw display
6161 T16++547560000 T^{16} + \cdots + 547560000 Copy content Toggle raw display
6767 T16++2603856784 T^{16} + \cdots + 2603856784 Copy content Toggle raw display
7171 T16+486T14++65610000 T^{16} + 486 T^{14} + \cdots + 65610000 Copy content Toggle raw display
7373 T16+300T14++71115489 T^{16} + 300 T^{14} + \cdots + 71115489 Copy content Toggle raw display
7979 T16++970422010000 T^{16} + \cdots + 970422010000 Copy content Toggle raw display
8383 T16++953512641 T^{16} + \cdots + 953512641 Copy content Toggle raw display
8989 (T8+24T7++11451861)2 (T^{8} + 24 T^{7} + \cdots + 11451861)^{2} Copy content Toggle raw display
9797 T16++9120206721024 T^{16} + \cdots + 9120206721024 Copy content Toggle raw display
show more
show less