L(s) = 1 | + (−0.866 + 0.5i)2-s + (1.59 − 0.681i)3-s + (0.499 − 0.866i)4-s + (−0.714 + 1.23i)5-s + (−1.03 + 1.38i)6-s + 0.999i·8-s + (2.07 − 2.17i)9-s − 1.42i·10-s + (−2.96 + 1.70i)11-s + (0.206 − 1.71i)12-s + (5.48 + 3.16i)13-s + (−0.294 + 2.45i)15-s + (−0.5 − 0.866i)16-s − 2.28·17-s + (−0.708 + 2.91i)18-s − 2.16i·19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.919 − 0.393i)3-s + (0.249 − 0.433i)4-s + (−0.319 + 0.553i)5-s + (−0.423 + 0.565i)6-s + 0.353i·8-s + (0.690 − 0.723i)9-s − 0.452i·10-s + (−0.892 + 0.515i)11-s + (0.0594 − 0.496i)12-s + (1.52 + 0.878i)13-s + (−0.0760 + 0.634i)15-s + (−0.125 − 0.216i)16-s − 0.553·17-s + (−0.167 + 0.687i)18-s − 0.497i·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(0.701−0.712i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
0.701−0.712i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), 0.701−0.712i)
|
Particular Values
L(1) |
≈ |
1.42434+0.596405i |
L(21) |
≈ |
1.42434+0.596405i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(−1.59+0.681i)T |
| 7 | 1 |
good | 5 | 1+(0.714−1.23i)T+(−2.5−4.33i)T2 |
| 11 | 1+(2.96−1.70i)T+(5.5−9.52i)T2 |
| 13 | 1+(−5.48−3.16i)T+(6.5+11.2i)T2 |
| 17 | 1+2.28T+17T2 |
| 19 | 1+2.16iT−19T2 |
| 23 | 1+(−6.97−4.02i)T+(11.5+19.9i)T2 |
| 29 | 1+(0.298−0.172i)T+(14.5−25.1i)T2 |
| 31 | 1+(−3.76−2.17i)T+(15.5+26.8i)T2 |
| 37 | 1+2.15T+37T2 |
| 41 | 1+(0.202−0.350i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.90−5.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+(2.75+4.77i)T+(−23.5+40.7i)T2 |
| 53 | 1−9.88iT−53T2 |
| 59 | 1+(−5.51+9.55i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−9.94+5.73i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.12−3.68i)T+(−33.5−58.0i)T2 |
| 71 | 1−3.55iT−71T2 |
| 73 | 1−0.232iT−73T2 |
| 79 | 1+(7.28+12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.811+1.40i)T+(−41.5+71.8i)T2 |
| 89 | 1+4.05T+89T2 |
| 97 | 1+(−9.18+5.30i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08731546398990067921788562140, −9.090381097387914821948537628842, −8.660201998585122885566425733189, −7.66884948294345094664576691074, −7.01765453944542912593552962324, −6.37709989907637661183344804455, −4.94131973614177076907902370178, −3.65919003968874066784519450425, −2.64633661360778512235650482947, −1.37925347969871100902780228075,
0.942276407603216963042631486671, 2.53264813417342685814344712667, 3.41611790471131309462250585582, 4.41332599357883119025763259328, 5.54993361167998594101170745171, 6.86005304704800607968829178123, 8.019009843080315113505161066080, 8.464480588020801993616141751452, 8.916138744031926907253028481786, 10.09893345862168230760005229979