L(s) = 1 | + (−0.866 + 0.5i)2-s + (1.59 − 0.681i)3-s + (0.499 − 0.866i)4-s + (−0.714 + 1.23i)5-s + (−1.03 + 1.38i)6-s + 0.999i·8-s + (2.07 − 2.17i)9-s − 1.42i·10-s + (−2.96 + 1.70i)11-s + (0.206 − 1.71i)12-s + (5.48 + 3.16i)13-s + (−0.294 + 2.45i)15-s + (−0.5 − 0.866i)16-s − 2.28·17-s + (−0.708 + 2.91i)18-s − 2.16i·19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.919 − 0.393i)3-s + (0.249 − 0.433i)4-s + (−0.319 + 0.553i)5-s + (−0.423 + 0.565i)6-s + 0.353i·8-s + (0.690 − 0.723i)9-s − 0.452i·10-s + (−0.892 + 0.515i)11-s + (0.0594 − 0.496i)12-s + (1.52 + 0.878i)13-s + (−0.0760 + 0.634i)15-s + (−0.125 − 0.216i)16-s − 0.553·17-s + (−0.167 + 0.687i)18-s − 0.497i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42434 + 0.596405i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42434 + 0.596405i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-1.59 + 0.681i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.714 - 1.23i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.96 - 1.70i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-5.48 - 3.16i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2.28T + 17T^{2} \) |
| 19 | \( 1 + 2.16iT - 19T^{2} \) |
| 23 | \( 1 + (-6.97 - 4.02i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.298 - 0.172i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.76 - 2.17i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.15T + 37T^{2} \) |
| 41 | \( 1 + (0.202 - 0.350i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.90 - 5.03i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.75 + 4.77i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.88iT - 53T^{2} \) |
| 59 | \( 1 + (-5.51 + 9.55i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.94 + 5.73i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.12 - 3.68i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.55iT - 71T^{2} \) |
| 73 | \( 1 - 0.232iT - 73T^{2} \) |
| 79 | \( 1 + (7.28 + 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.811 + 1.40i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 4.05T + 89T^{2} \) |
| 97 | \( 1 + (-9.18 + 5.30i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08731546398990067921788562140, −9.090381097387914821948537628842, −8.660201998585122885566425733189, −7.66884948294345094664576691074, −7.01765453944542912593552962324, −6.37709989907637661183344804455, −4.94131973614177076907902370178, −3.65919003968874066784519450425, −2.64633661360778512235650482947, −1.37925347969871100902780228075,
0.942276407603216963042631486671, 2.53264813417342685814344712667, 3.41611790471131309462250585582, 4.41332599357883119025763259328, 5.54993361167998594101170745171, 6.86005304704800607968829178123, 8.019009843080315113505161066080, 8.464480588020801993616141751452, 8.916138744031926907253028481786, 10.09893345862168230760005229979