L(s) = 1 | + (0.866 + 0.5i)2-s + (1.28 + 1.16i)3-s + (0.499 + 0.866i)4-s + (0.450 + 0.779i)5-s + (0.533 + 1.64i)6-s + 0.999i·8-s + (0.308 + 2.98i)9-s + 0.900i·10-s + (2.70 + 1.56i)11-s + (−0.361 + 1.69i)12-s + (1.99 − 1.14i)13-s + (−0.325 + 1.52i)15-s + (−0.5 + 0.866i)16-s − 5.15·17-s + (−1.22 + 2.73i)18-s − 2.74i·19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.742 + 0.669i)3-s + (0.249 + 0.433i)4-s + (0.201 + 0.348i)5-s + (0.217 + 0.672i)6-s + 0.353i·8-s + (0.102 + 0.994i)9-s + 0.284i·10-s + (0.816 + 0.471i)11-s + (−0.104 + 0.488i)12-s + (0.552 − 0.318i)13-s + (−0.0840 + 0.393i)15-s + (−0.125 + 0.216i)16-s − 1.24·17-s + (−0.288 + 0.645i)18-s − 0.630i·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.118−0.992i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.118−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.118−0.992i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.118−0.992i)
|
Particular Values
L(1) |
≈ |
1.98238+2.23262i |
L(21) |
≈ |
1.98238+2.23262i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(−1.28−1.16i)T |
| 7 | 1 |
good | 5 | 1+(−0.450−0.779i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.70−1.56i)T+(5.5+9.52i)T2 |
| 13 | 1+(−1.99+1.14i)T+(6.5−11.2i)T2 |
| 17 | 1+5.15T+17T2 |
| 19 | 1+2.74iT−19T2 |
| 23 | 1+(−1.48+0.857i)T+(11.5−19.9i)T2 |
| 29 | 1+(1.85+1.07i)T+(14.5+25.1i)T2 |
| 31 | 1+(8.66−5.00i)T+(15.5−26.8i)T2 |
| 37 | 1−9.47T+37T2 |
| 41 | 1+(1.22+2.11i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.273−0.473i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.93+6.80i)T+(−23.5−40.7i)T2 |
| 53 | 1−13.9iT−53T2 |
| 59 | 1+(−3.99−6.91i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.28+3.62i)T+(30.5+52.8i)T2 |
| 67 | 1+(1.83+3.17i)T+(−33.5+58.0i)T2 |
| 71 | 1+14.1iT−71T2 |
| 73 | 1+12.6iT−73T2 |
| 79 | 1+(−3.27+5.67i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.184−0.319i)T+(−41.5−71.8i)T2 |
| 89 | 1−12.0T+89T2 |
| 97 | 1+(8.86+5.12i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54979448111170542079888210155, −9.166343697197955903279780914809, −8.946594268791188841466652933506, −7.73672884010261602497210765497, −6.91078767809104605324773131284, −6.03727930266735388680528326651, −4.82365412821909214883670031306, −4.13182025286398108780207731661, −3.12572417579885815315808578264, −2.07286702692552144011863249123,
1.21528612686041622708283754331, 2.23198702496750843319658778816, 3.50714590215879572041658242938, 4.22095205746676741332414947567, 5.61579400515637402175584616328, 6.43093986785098084165709478868, 7.21984145798884705521272357445, 8.350365018176095638400880270782, 9.109637500216336164515126672084, 9.666515070423246977106748866963