Properties

Label 882.2.m.b
Level $882$
Weight $2$
Character orbit 882.m
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(293,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{14} q^{3} - \beta_{7} q^{4} + (\beta_{15} - \beta_{10} + \cdots - \beta_{5}) q^{5} + ( - \beta_{9} - \beta_{4}) q^{6} + \beta_{6} q^{8} + ( - \beta_{8} + \beta_{6} - \beta_{4} + \cdots + 1) q^{9}+ \cdots + ( - 2 \beta_{15} - \beta_{14} + \cdots - 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{9} - 12 q^{11} + 6 q^{13} - 18 q^{15} - 8 q^{16} + 36 q^{17} + 6 q^{23} - 6 q^{24} - 8 q^{25} - 24 q^{26} + 36 q^{27} + 6 q^{29} + 18 q^{30} + 6 q^{31} + 18 q^{33} + 4 q^{37} + 42 q^{39}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 50 \nu^{15} - 1352 \nu^{14} + 6827 \nu^{13} - 7676 \nu^{12} - 27422 \nu^{11} + 107246 \nu^{10} + \cdots - 2825604 ) / 142155 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1292 \nu^{15} - 10486 \nu^{14} + 25660 \nu^{13} + 10145 \nu^{12} - 192280 \nu^{11} + 408694 \nu^{10} + \cdots - 9270693 ) / 142155 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2846 \nu^{15} - 22369 \nu^{14} + 55246 \nu^{13} + 17972 \nu^{12} - 402586 \nu^{11} + \cdots - 20783061 ) / 142155 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 2782 \nu^{15} + 15918 \nu^{14} - 26947 \nu^{13} - 42629 \nu^{12} + 270897 \nu^{11} + \cdots + 7405182 ) / 47385 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 3648 \nu^{15} + 23120 \nu^{14} - 45376 \nu^{13} - 47012 \nu^{12} + 401996 \nu^{11} + \cdots + 14281839 ) / 47385 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 16948 \nu^{15} + 107120 \nu^{14} - 210206 \nu^{13} - 216202 \nu^{12} + 1856546 \nu^{11} + \cdots + 66620394 ) / 142155 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 4120 \nu^{15} + 25571 \nu^{14} - 48788 \nu^{13} - 55006 \nu^{12} + 441224 \nu^{11} + \cdots + 14935023 ) / 28431 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 24706 \nu^{15} - 155855 \nu^{14} + 305147 \nu^{13} + 316579 \nu^{12} - 2700647 \nu^{11} + \cdots - 96324228 ) / 142155 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 2015 \nu^{15} - 12538 \nu^{14} + 24088 \nu^{13} + 26576 \nu^{12} - 216643 \nu^{11} + 381184 \nu^{10} + \cdots - 7453296 ) / 10935 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 26777 \nu^{15} + 172141 \nu^{14} - 345205 \nu^{13} - 329150 \nu^{12} + 2992915 \nu^{11} + \cdots + 112005018 ) / 142155 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 32006 \nu^{15} - 201190 \nu^{14} + 390892 \nu^{13} + 415394 \nu^{12} - 3479542 \nu^{11} + \cdots - 121376313 ) / 142155 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10990 \nu^{15} + 68842 \nu^{14} - 133062 \nu^{13} - 143724 \nu^{12} + 1190062 \nu^{11} + \cdots + 41433444 ) / 47385 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 35897 \nu^{15} + 219337 \nu^{14} - 409846 \nu^{13} - 492632 \nu^{12} + 3774151 \nu^{11} + \cdots + 122931270 ) / 142155 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 14807 \nu^{15} + 92828 \nu^{14} - 179757 \nu^{13} - 193044 \nu^{12} + 1605257 \nu^{11} + \cdots + 55960227 ) / 47385 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 68699 \nu^{15} + 433198 \nu^{14} - 844756 \nu^{13} - 889547 \nu^{12} + 7506256 \nu^{11} + \cdots + 264515463 ) / 142155 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} - \beta_{9} - \beta_{8} + \beta_{7} + \beta_{6} - 2\beta_{4} + 2\beta_{3} - 2\beta_{2} + \beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - \beta_{15} + 4 \beta_{14} + \beta_{13} - 2 \beta_{12} + 2 \beta_{11} - \beta_{10} - \beta_{9} + \cdots + 3 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 3 \beta_{15} - \beta_{14} + 5 \beta_{13} + 2 \beta_{12} + \beta_{11} + \beta_{10} - 3 \beta_{8} + \cdots - 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{15} + 2 \beta_{14} + 11 \beta_{13} - 4 \beta_{12} + 7 \beta_{11} + 4 \beta_{10} + 8 \beta_{9} + \cdots + 7 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 11 \beta_{15} - 6 \beta_{14} + 9 \beta_{13} + 12 \beta_{11} + 6 \beta_{10} - 2 \beta_{9} + \beta_{8} + \cdots + 10 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 5 \beta_{15} + 26 \beta_{14} + 2 \beta_{13} - 31 \beta_{12} + 28 \beta_{11} + 13 \beta_{10} + \cdots + 15 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 15 \beta_{15} + 16 \beta_{14} - 20 \beta_{13} + 16 \beta_{12} + 29 \beta_{11} - 13 \beta_{10} + \cdots - 11 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 43 \beta_{15} + 28 \beta_{14} - 8 \beta_{13} + 10 \beta_{12} + 44 \beta_{11} - 16 \beta_{10} + 25 \beta_{9} + \cdots - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 50 \beta_{15} - 12 \beta_{14} - 18 \beta_{13} + 102 \beta_{12} + 102 \beta_{11} - 144 \beta_{10} + \cdots + 134 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 140 \beta_{15} + 139 \beta_{14} + 31 \beta_{13} - 224 \beta_{12} + 95 \beta_{11} - 46 \beta_{10} + \cdots - 109 \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 60 \beta_{15} + 503 \beta_{14} + 23 \beta_{13} - 313 \beta_{12} + 133 \beta_{11} - 218 \beta_{10} + \cdots - 193 ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 94 \beta_{15} + 722 \beta_{14} + 191 \beta_{13} - 343 \beta_{12} - 182 \beta_{11} + 238 \beta_{10} + \cdots - 1112 ) / 3 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 425 \beta_{15} + 1353 \beta_{14} + 255 \beta_{13} + 1086 \beta_{12} + 1068 \beta_{11} - 588 \beta_{10} + \cdots + 727 ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 953 \beta_{15} + 446 \beta_{14} + 35 \beta_{13} + 2231 \beta_{12} + 1294 \beta_{11} + 82 \beta_{10} + \cdots + 1896 ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 1563 \beta_{15} + 1963 \beta_{14} - 725 \beta_{13} + 2308 \beta_{12} + 3086 \beta_{11} - 1306 \beta_{10} + \cdots + 6694 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1\) \(-\beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
293.1
−1.68301 + 0.409224i
1.73109 0.0577511i
0.765614 1.55365i
0.320287 + 1.70218i
1.58110 + 0.707199i
−1.70672 0.295146i
1.71298 + 0.256290i
1.27866 1.16834i
−1.68301 0.409224i
1.73109 + 0.0577511i
0.765614 + 1.55365i
0.320287 1.70218i
1.58110 0.707199i
−1.70672 + 0.295146i
1.71298 0.256290i
1.27866 + 1.16834i
−0.866025 + 0.500000i −1.59238 + 0.681407i 0.500000 0.866025i 0.714925 1.23829i 1.03834 1.38631i 0 1.00000i 2.07137 2.17012i 1.42985i
293.2 −0.866025 + 0.500000i −0.840895 1.51423i 0.500000 0.866025i 1.14095 1.97618i 1.48535 + 0.890915i 0 1.00000i −1.58579 + 2.54662i 2.28190i
293.3 −0.866025 + 0.500000i −0.0569233 + 1.73112i 0.500000 0.866025i −1.82207 + 3.15592i −0.816261 1.52765i 0 1.00000i −2.99352 0.197082i 3.64414i
293.4 −0.866025 + 0.500000i 1.62418 + 0.601709i 0.500000 0.866025i −0.0338034 + 0.0585493i −1.70743 + 0.290993i 0 1.00000i 2.27589 + 1.95456i 0.0676069i
293.5 0.866025 0.500000i −1.28617 + 1.16007i 0.500000 0.866025i −0.450129 + 0.779646i −0.533822 + 1.64774i 0 1.00000i 0.308473 2.98410i 0.900258i
293.6 0.866025 0.500000i −0.991125 1.42045i 0.500000 0.866025i 0.483662 0.837727i −1.56856 0.734581i 0 1.00000i −1.03534 + 2.81568i 0.967324i
293.7 0.866025 0.500000i 1.43162 0.974922i 0.500000 0.866025i −1.80966 + 3.13442i 0.752355 1.56012i 0 1.00000i 1.09905 2.79143i 3.61932i
293.8 0.866025 0.500000i 1.71170 0.264701i 0.500000 0.866025i 1.77612 3.07634i 1.35003 1.08509i 0 1.00000i 2.85987 0.906179i 3.55225i
587.1 −0.866025 0.500000i −1.59238 0.681407i 0.500000 + 0.866025i 0.714925 + 1.23829i 1.03834 + 1.38631i 0 1.00000i 2.07137 + 2.17012i 1.42985i
587.2 −0.866025 0.500000i −0.840895 + 1.51423i 0.500000 + 0.866025i 1.14095 + 1.97618i 1.48535 0.890915i 0 1.00000i −1.58579 2.54662i 2.28190i
587.3 −0.866025 0.500000i −0.0569233 1.73112i 0.500000 + 0.866025i −1.82207 3.15592i −0.816261 + 1.52765i 0 1.00000i −2.99352 + 0.197082i 3.64414i
587.4 −0.866025 0.500000i 1.62418 0.601709i 0.500000 + 0.866025i −0.0338034 0.0585493i −1.70743 0.290993i 0 1.00000i 2.27589 1.95456i 0.0676069i
587.5 0.866025 + 0.500000i −1.28617 1.16007i 0.500000 + 0.866025i −0.450129 0.779646i −0.533822 1.64774i 0 1.00000i 0.308473 + 2.98410i 0.900258i
587.6 0.866025 + 0.500000i −0.991125 + 1.42045i 0.500000 + 0.866025i 0.483662 + 0.837727i −1.56856 + 0.734581i 0 1.00000i −1.03534 2.81568i 0.967324i
587.7 0.866025 + 0.500000i 1.43162 + 0.974922i 0.500000 + 0.866025i −1.80966 3.13442i 0.752355 + 1.56012i 0 1.00000i 1.09905 + 2.79143i 3.61932i
587.8 0.866025 + 0.500000i 1.71170 + 0.264701i 0.500000 + 0.866025i 1.77612 + 3.07634i 1.35003 + 1.08509i 0 1.00000i 2.85987 + 0.906179i 3.55225i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 293.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.m.b 16
3.b odd 2 1 2646.2.m.b 16
7.b odd 2 1 882.2.m.a 16
7.c even 3 1 126.2.l.a 16
7.c even 3 1 882.2.t.a 16
7.d odd 6 1 126.2.t.a yes 16
7.d odd 6 1 882.2.l.b 16
9.c even 3 1 2646.2.m.a 16
9.d odd 6 1 882.2.m.a 16
21.c even 2 1 2646.2.m.a 16
21.g even 6 1 378.2.t.a 16
21.g even 6 1 2646.2.l.a 16
21.h odd 6 1 378.2.l.a 16
21.h odd 6 1 2646.2.t.b 16
28.f even 6 1 1008.2.df.c 16
28.g odd 6 1 1008.2.ca.c 16
63.g even 3 1 1134.2.k.a 16
63.g even 3 1 2646.2.l.a 16
63.h even 3 1 378.2.t.a 16
63.i even 6 1 882.2.t.a 16
63.i even 6 1 1134.2.k.a 16
63.j odd 6 1 126.2.t.a yes 16
63.k odd 6 1 378.2.l.a 16
63.l odd 6 1 2646.2.m.b 16
63.n odd 6 1 882.2.l.b 16
63.n odd 6 1 1134.2.k.b 16
63.o even 6 1 inner 882.2.m.b 16
63.s even 6 1 126.2.l.a 16
63.t odd 6 1 1134.2.k.b 16
63.t odd 6 1 2646.2.t.b 16
84.j odd 6 1 3024.2.df.c 16
84.n even 6 1 3024.2.ca.c 16
252.n even 6 1 3024.2.ca.c 16
252.u odd 6 1 3024.2.df.c 16
252.bb even 6 1 1008.2.df.c 16
252.bn odd 6 1 1008.2.ca.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.l.a 16 7.c even 3 1
126.2.l.a 16 63.s even 6 1
126.2.t.a yes 16 7.d odd 6 1
126.2.t.a yes 16 63.j odd 6 1
378.2.l.a 16 21.h odd 6 1
378.2.l.a 16 63.k odd 6 1
378.2.t.a 16 21.g even 6 1
378.2.t.a 16 63.h even 3 1
882.2.l.b 16 7.d odd 6 1
882.2.l.b 16 63.n odd 6 1
882.2.m.a 16 7.b odd 2 1
882.2.m.a 16 9.d odd 6 1
882.2.m.b 16 1.a even 1 1 trivial
882.2.m.b 16 63.o even 6 1 inner
882.2.t.a 16 7.c even 3 1
882.2.t.a 16 63.i even 6 1
1008.2.ca.c 16 28.g odd 6 1
1008.2.ca.c 16 252.bn odd 6 1
1008.2.df.c 16 28.f even 6 1
1008.2.df.c 16 252.bb even 6 1
1134.2.k.a 16 63.g even 3 1
1134.2.k.a 16 63.i even 6 1
1134.2.k.b 16 63.n odd 6 1
1134.2.k.b 16 63.t odd 6 1
2646.2.l.a 16 21.g even 6 1
2646.2.l.a 16 63.g even 3 1
2646.2.m.a 16 9.c even 3 1
2646.2.m.a 16 21.c even 2 1
2646.2.m.b 16 3.b odd 2 1
2646.2.m.b 16 63.l odd 6 1
2646.2.t.b 16 21.h odd 6 1
2646.2.t.b 16 63.t odd 6 1
3024.2.ca.c 16 84.n even 6 1
3024.2.ca.c 16 252.n even 6 1
3024.2.df.c 16 84.j odd 6 1
3024.2.df.c 16 252.u odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{16} + 24 T_{5}^{14} - 24 T_{5}^{13} + 423 T_{5}^{12} - 450 T_{5}^{11} + 3582 T_{5}^{10} + \cdots + 81 \) acting on \(S_{2}^{\mathrm{new}}(882, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} - 3 T^{14} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( T^{16} + 24 T^{14} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} + 12 T^{15} + \cdots + 61732449 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 390971529 \) Copy content Toggle raw display
$17$ \( (T^{8} - 18 T^{7} + \cdots + 7488)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + 144 T^{14} + \cdots + 9199089 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 187388721 \) Copy content Toggle raw display
$29$ \( T^{16} - 6 T^{15} + \cdots + 1108809 \) Copy content Toggle raw display
$31$ \( T^{16} - 6 T^{15} + \cdots + 65610000 \) Copy content Toggle raw display
$37$ \( (T^{8} - 2 T^{7} + \cdots - 180959)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + 6 T^{15} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 2999643361 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 588203099136 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 36759242529 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 216504090000 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 547560000 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 2603856784 \) Copy content Toggle raw display
$71$ \( T^{16} + 486 T^{14} + \cdots + 65610000 \) Copy content Toggle raw display
$73$ \( T^{16} + 300 T^{14} + \cdots + 71115489 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 970422010000 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 953512641 \) Copy content Toggle raw display
$89$ \( (T^{8} - 24 T^{7} + \cdots + 11451861)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 9120206721024 \) Copy content Toggle raw display
show more
show less