L(s) = 1 | + (0.866 + 0.5i)2-s + (1.71 + 0.264i)3-s + (0.499 + 0.866i)4-s + (1.77 + 3.07i)5-s + (1.35 + 1.08i)6-s + 0.999i·8-s + (2.85 + 0.906i)9-s + 3.55i·10-s + (−2.61 − 1.51i)11-s + (0.626 + 1.61i)12-s + (−0.888 + 0.513i)13-s + (2.22 + 5.73i)15-s + (−0.5 + 0.866i)16-s + 1.61·17-s + (2.02 + 2.21i)18-s − 8.22i·19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.988 + 0.152i)3-s + (0.249 + 0.433i)4-s + (0.794 + 1.37i)5-s + (0.551 + 0.442i)6-s + 0.353i·8-s + (0.953 + 0.302i)9-s + 1.12i·10-s + (−0.789 − 0.455i)11-s + (0.180 + 0.466i)12-s + (−0.246 + 0.142i)13-s + (0.574 + 1.48i)15-s + (−0.125 + 0.216i)16-s + 0.392·17-s + (0.476 + 0.522i)18-s − 1.88i·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(0.147−0.989i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(0.147−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
0.147−0.989i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), 0.147−0.989i)
|
Particular Values
L(1) |
≈ |
2.56932+2.21485i |
L(21) |
≈ |
2.56932+2.21485i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(−1.71−0.264i)T |
| 7 | 1 |
good | 5 | 1+(−1.77−3.07i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.61+1.51i)T+(5.5+9.52i)T2 |
| 13 | 1+(0.888−0.513i)T+(6.5−11.2i)T2 |
| 17 | 1−1.61T+17T2 |
| 19 | 1+8.22iT−19T2 |
| 23 | 1+(2.90−1.67i)T+(11.5−19.9i)T2 |
| 29 | 1+(3.70+2.13i)T+(14.5+25.1i)T2 |
| 31 | 1+(−5.18+2.99i)T+(15.5−26.8i)T2 |
| 37 | 1+5.84T+37T2 |
| 41 | 1+(−0.0472−0.0817i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.05+5.29i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−2.57+4.45i)T+(−23.5−40.7i)T2 |
| 53 | 1−3.18iT−53T2 |
| 59 | 1+(−4.42−7.65i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.06+2.34i)T+(30.5+52.8i)T2 |
| 67 | 1+(−0.187−0.325i)T+(−33.5+58.0i)T2 |
| 71 | 1−13.9iT−71T2 |
| 73 | 1+1.31iT−73T2 |
| 79 | 1+(0.462−0.800i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−5.43+9.40i)T+(−41.5−71.8i)T2 |
| 89 | 1−4.70T+89T2 |
| 97 | 1+(−13.3−7.69i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31773670558876871144786385826, −9.529283269116551960985485763904, −8.589699031168065934454568070552, −7.51606981036690370624126612465, −7.02479175206100706799205836595, −6.04317589266762235838329268686, −5.06486690205397779167489037593, −3.81526367271740658324772454686, −2.80768051523945549033807301908, −2.29647793179910922339432707762,
1.38954440153447791948924196278, 2.22096826051998805853263170167, 3.50421263962333652713603767567, 4.56959320795389734518506662794, 5.34571046014919679774916131859, 6.27151988320243374154414415192, 7.64868620487261135010927397254, 8.265114080787718883099877206086, 9.210146063877125594572872571753, 9.958178518452828446617928797956