Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1134,2,Mod(647,1134)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1134.647");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1134.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 126) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
647.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.14095 | − | 1.97618i | 0 | −2.64314 | − | 0.117551i | 1.00000i | 0 | 1.97618 | + | 1.14095i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.714925 | − | 1.23829i | 0 | 2.10995 | − | 1.59628i | 1.00000i | 0 | 1.23829 | + | 0.714925i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.3 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.0338034 | + | 0.0585493i | 0 | 1.44425 | − | 2.21679i | 1.00000i | 0 | −0.0585493 | − | 0.0338034i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.4 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 1.82207 | + | 3.15592i | 0 | −1.04503 | + | 2.43062i | 1.00000i | 0 | −3.15592 | − | 1.82207i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.5 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.77612 | − | 3.07634i | 0 | −1.14420 | − | 2.38554i | − | 1.00000i | 0 | −3.07634 | − | 1.77612i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.6 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.483662 | − | 0.837727i | 0 | −0.238876 | + | 2.63495i | − | 1.00000i | 0 | −0.837727 | − | 0.483662i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.7 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.450129 | + | 0.779646i | 0 | −2.62906 | − | 0.296732i | − | 1.00000i | 0 | 0.779646 | + | 0.450129i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.8 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 1.80966 | + | 3.13442i | 0 | 2.14611 | + | 1.54733i | − | 1.00000i | 0 | 3.13442 | + | 1.80966i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.14095 | + | 1.97618i | 0 | −2.64314 | + | 0.117551i | − | 1.00000i | 0 | 1.97618 | − | 1.14095i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.714925 | + | 1.23829i | 0 | 2.10995 | + | 1.59628i | − | 1.00000i | 0 | 1.23829 | − | 0.714925i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.3 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.0338034 | − | 0.0585493i | 0 | 1.44425 | + | 2.21679i | − | 1.00000i | 0 | −0.0585493 | + | 0.0338034i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.4 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 1.82207 | − | 3.15592i | 0 | −1.04503 | − | 2.43062i | − | 1.00000i | 0 | −3.15592 | + | 1.82207i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.5 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.77612 | + | 3.07634i | 0 | −1.14420 | + | 2.38554i | 1.00000i | 0 | −3.07634 | + | 1.77612i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.6 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.483662 | + | 0.837727i | 0 | −0.238876 | − | 2.63495i | 1.00000i | 0 | −0.837727 | + | 0.483662i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.7 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.450129 | − | 0.779646i | 0 | −2.62906 | + | 0.296732i | 1.00000i | 0 | 0.779646 | − | 0.450129i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
971.8 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 1.80966 | − | 3.13442i | 0 | 2.14611 | − | 1.54733i | 1.00000i | 0 | 3.13442 | − | 1.80966i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.g | even | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .