Properties

Label 1134.2.k.b
Level 11341134
Weight 22
Character orbit 1134.k
Analytic conductor 9.0559.055
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(647,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1134=2347 1134 = 2 \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1134.k (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.055035589219.05503558921
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 34 3^{4}
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β7q2+β8q4+(β12β10β5)q5β10q7+(β7+β1)q8+(β15+β11)q10+(β15β11β8++1)q11++(β142β12++3)q98+O(q100) q + \beta_{7} q^{2} + \beta_{8} q^{4} + ( - \beta_{12} - \beta_{10} - \beta_{5}) q^{5} - \beta_{10} q^{7} + (\beta_{7} + \beta_1) q^{8} + (\beta_{15} + \beta_{11}) q^{10} + ( - \beta_{15} - \beta_{11} - \beta_{8} + \cdots + 1) q^{11}+ \cdots + ( - \beta_{14} - 2 \beta_{12} + \cdots + 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q44q7+12q118q16+18q176q238q2512q262q286q3130q352q3712q41+4q43+12q44+6q4618q472q49++24q98+O(q100) 16 q + 8 q^{4} - 4 q^{7} + 12 q^{11} - 8 q^{16} + 18 q^{17} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 2 q^{28} - 6 q^{31} - 30 q^{35} - 2 q^{37} - 12 q^{41} + 4 q^{43} + 12 q^{44} + 6 q^{46} - 18 q^{47} - 2 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x168x15+23x148x13131x12+380x11289x10880x9++6561 x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 : Copy content Toggle raw display

β1\beta_{1}== (50ν15+1352ν146827ν13+7676ν12+27422ν11107246ν10++2825604)/142155 ( 50 \nu^{15} + 1352 \nu^{14} - 6827 \nu^{13} + 7676 \nu^{12} + 27422 \nu^{11} - 107246 \nu^{10} + \cdots + 2825604 ) / 142155 Copy content Toggle raw display
β2\beta_{2}== (169ν15866ν14+1319ν13+2308ν1213199ν11+19055ν10+244944)/47385 ( 169 \nu^{15} - 866 \nu^{14} + 1319 \nu^{13} + 2308 \nu^{12} - 13199 \nu^{11} + 19055 \nu^{10} + \cdots - 244944 ) / 47385 Copy content Toggle raw display
β3\beta_{3}== (154ν151325ν14+3608ν13224ν1222478ν11+55022ν10+1285227)/47385 ( 154 \nu^{15} - 1325 \nu^{14} + 3608 \nu^{13} - 224 \nu^{12} - 22478 \nu^{11} + 55022 \nu^{10} + \cdots - 1285227 ) / 47385 Copy content Toggle raw display
β4\beta_{4}== (1445ν159836ν14+21081ν13+15627ν12172766ν11+334353ν10+7117227)/47385 ( 1445 \nu^{15} - 9836 \nu^{14} + 21081 \nu^{13} + 15627 \nu^{12} - 172766 \nu^{11} + 334353 \nu^{10} + \cdots - 7117227 ) / 47385 Copy content Toggle raw display
β5\beta_{5}== (2858ν1519265ν14+40866ν13+31392ν12338066ν11+649239ν10+14041269)/47385 ( 2858 \nu^{15} - 19265 \nu^{14} + 40866 \nu^{13} + 31392 \nu^{12} - 338066 \nu^{11} + 649239 \nu^{10} + \cdots - 14041269 ) / 47385 Copy content Toggle raw display
β6\beta_{6}== (11192ν15+70123ν14136087ν13145859ν12+1215277ν11++42998607)/142155 ( - 11192 \nu^{15} + 70123 \nu^{14} - 136087 \nu^{13} - 145859 \nu^{12} + 1215277 \nu^{11} + \cdots + 42998607 ) / 142155 Copy content Toggle raw display
β7\beta_{7}== (16898ν15108472ν14+217033ν13+208526ν121883968ν11+69445998)/142155 ( 16898 \nu^{15} - 108472 \nu^{14} + 217033 \nu^{13} + 208526 \nu^{12} - 1883968 \nu^{11} + \cdots - 69445998 ) / 142155 Copy content Toggle raw display
β8\beta_{8}== (4120ν15+25571ν1448788ν1355006ν12+441224ν11++14963454)/28431 ( - 4120 \nu^{15} + 25571 \nu^{14} - 48788 \nu^{13} - 55006 \nu^{12} + 441224 \nu^{11} + \cdots + 14963454 ) / 28431 Copy content Toggle raw display
β9\beta_{9}== (8586ν1553254ν14+101261ν13+115567ν12919066ν11+30865131)/47385 ( 8586 \nu^{15} - 53254 \nu^{14} + 101261 \nu^{13} + 115567 \nu^{12} - 919066 \nu^{11} + \cdots - 30865131 ) / 47385 Copy content Toggle raw display
β10\beta_{10}== (26068ν15+165707ν14325403ν13334861ν12+2873363ν11++102032298)/142155 ( - 26068 \nu^{15} + 165707 \nu^{14} - 325403 \nu^{13} - 334861 \nu^{12} + 2873363 \nu^{11} + \cdots + 102032298 ) / 142155 Copy content Toggle raw display
β11\beta_{11}== (31130ν15+194263ν14374983ν13405716ν12+3354958ν11++117273501)/142155 ( - 31130 \nu^{15} + 194263 \nu^{14} - 374983 \nu^{13} - 405716 \nu^{12} + 3354958 \nu^{11} + \cdots + 117273501 ) / 142155 Copy content Toggle raw display
β12\beta_{12}== (33311ν15207064ν14+396466ν13+441842ν123574291ν11+121811526)/142155 ( 33311 \nu^{15} - 207064 \nu^{14} + 396466 \nu^{13} + 441842 \nu^{12} - 3574291 \nu^{11} + \cdots - 121811526 ) / 142155 Copy content Toggle raw display
β13\beta_{13}== (5368ν1532959ν14+62025ν13+72930ν12567820ν11+981351ν10+18826182)/15795 ( 5368 \nu^{15} - 32959 \nu^{14} + 62025 \nu^{13} + 72930 \nu^{12} - 567820 \nu^{11} + 981351 \nu^{10} + \cdots - 18826182 ) / 15795 Copy content Toggle raw display
β14\beta_{14}== (62668ν15+397070ν14778856ν13802747ν12+6878696ν11++244346949)/142155 ( - 62668 \nu^{15} + 397070 \nu^{14} - 778856 \nu^{13} - 802747 \nu^{12} + 6878696 \nu^{11} + \cdots + 244346949 ) / 142155 Copy content Toggle raw display
β15\beta_{15}== (5105ν1531804ν14+61039ν13+67583ν12549514ν11+965497ν10+18816948)/10935 ( 5105 \nu^{15} - 31804 \nu^{14} + 61039 \nu^{13} + 67583 \nu^{12} - 549514 \nu^{11} + 965497 \nu^{10} + \cdots - 18816948 ) / 10935 Copy content Toggle raw display
ν\nu== (β15+2β9+β8+β72β6β4β3+2β2β1+2)/3 ( -\beta_{15} + 2\beta_{9} + \beta_{8} + \beta_{7} - 2\beta_{6} - \beta_{4} - \beta_{3} + 2\beta_{2} - \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β142β13β11+β10+3β92β8+2β7β6++3)/3 ( \beta_{14} - 2 \beta_{13} - \beta_{11} + \beta_{10} + 3 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} - \beta_{6} + \cdots + 3 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β13+β12+2β11+3β10+6β9+2β8+5β7+4)/3 ( - 2 \beta_{13} + \beta_{12} + 2 \beta_{11} + 3 \beta_{10} + 6 \beta_{9} + 2 \beta_{8} + 5 \beta_{7} + \cdots - 4 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (5β153β13β12+3β11+6β10+2β93β8++8)/3 ( 5 \beta_{15} - 3 \beta_{13} - \beta_{12} + 3 \beta_{11} + 6 \beta_{10} + 2 \beta_{9} - 3 \beta_{8} + \cdots + 8 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (10β14+3β13+3β12+9β11+5β10+6β9+30β8+1)/3 ( - 10 \beta_{14} + 3 \beta_{13} + 3 \beta_{12} + 9 \beta_{11} + 5 \beta_{10} + 6 \beta_{9} + 30 \beta_{8} + \cdots - 1 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (7β152β14+7β132β12+11β112β10+8β9++20)/3 ( - 7 \beta_{15} - 2 \beta_{14} + 7 \beta_{13} - 2 \beta_{12} + 11 \beta_{11} - 2 \beta_{10} + 8 \beta_{9} + \cdots + 20 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (36β15+3β14+6β13+37β12+24β1121β10+3)/3 ( - 36 \beta_{15} + 3 \beta_{14} + 6 \beta_{13} + 37 \beta_{12} + 24 \beta_{11} - 21 \beta_{10} + \cdots - 3 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (42β15+68β14+10β13+66β12+50β1125β10++94)/3 ( - 42 \beta_{15} + 68 \beta_{14} + 10 \beta_{13} + 66 \beta_{12} + 50 \beta_{11} - 25 \beta_{10} + \cdots + 94 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (44β15+32β14+216β12+72β11+14β10+40β9++168)/3 ( - 44 \beta_{15} + 32 \beta_{14} + 216 \beta_{12} + 72 \beta_{11} + 14 \beta_{10} + 40 \beta_{9} + \cdots + 168 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (58β1518β14+90β13+172β12+126β11+162β10++188)/3 ( - 58 \beta_{15} - 18 \beta_{14} + 90 \beta_{13} + 172 \beta_{12} + 126 \beta_{11} + 162 \beta_{10} + \cdots + 188 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (126β15351β14100β13+231β12+13β11+333β10++217)/3 ( - 126 \beta_{15} - 351 \beta_{14} - 100 \beta_{13} + 231 \beta_{12} + 13 \beta_{11} + 333 \beta_{10} + \cdots + 217 ) / 3 Copy content Toggle raw display
ν12\nu^{12}== (209β15418β14251β13170β12+68β11+416β10+97)/3 ( - 209 \beta_{15} - 418 \beta_{14} - 251 \beta_{13} - 170 \beta_{12} + 68 \beta_{11} + 416 \beta_{10} + \cdots - 97 ) / 3 Copy content Toggle raw display
ν13\nu^{13}== (385β15609β141440β13+402β12186β11+414β10++1243)/3 ( 385 \beta_{15} - 609 \beta_{14} - 1440 \beta_{13} + 402 \beta_{12} - 186 \beta_{11} + 414 \beta_{10} + \cdots + 1243 ) / 3 Copy content Toggle raw display
ν14\nu^{14}== (1281β15511β14835β13+960β12+1042β11+812β10+1641)/3 ( 1281 \beta_{15} - 511 \beta_{14} - 835 \beta_{13} + 960 \beta_{12} + 1042 \beta_{11} + 812 \beta_{10} + \cdots - 1641 ) / 3 Copy content Toggle raw display
ν15\nu^{15}== (2826β151179β141012β13+2828β12+1522β11+2838β10++208)/3 ( 2826 \beta_{15} - 1179 \beta_{14} - 1012 \beta_{13} + 2828 \beta_{12} + 1522 \beta_{11} + 2838 \beta_{10} + \cdots + 208 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1134Z)×\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) 1β81 - \beta_{8} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
647.1
1.73109 + 0.0577511i
−1.68301 0.409224i
0.320287 1.70218i
0.765614 + 1.55365i
1.27866 + 1.16834i
−1.70672 + 0.295146i
1.58110 0.707199i
1.71298 0.256290i
1.73109 0.0577511i
−1.68301 + 0.409224i
0.320287 + 1.70218i
0.765614 1.55365i
1.27866 1.16834i
−1.70672 0.295146i
1.58110 + 0.707199i
1.71298 + 0.256290i
−0.866025 + 0.500000i 0 0.500000 0.866025i −1.14095 1.97618i 0 −2.64314 0.117551i 1.00000i 0 1.97618 + 1.14095i
647.2 −0.866025 + 0.500000i 0 0.500000 0.866025i −0.714925 1.23829i 0 2.10995 1.59628i 1.00000i 0 1.23829 + 0.714925i
647.3 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.0338034 + 0.0585493i 0 1.44425 2.21679i 1.00000i 0 −0.0585493 0.0338034i
647.4 −0.866025 + 0.500000i 0 0.500000 0.866025i 1.82207 + 3.15592i 0 −1.04503 + 2.43062i 1.00000i 0 −3.15592 1.82207i
647.5 0.866025 0.500000i 0 0.500000 0.866025i −1.77612 3.07634i 0 −1.14420 2.38554i 1.00000i 0 −3.07634 1.77612i
647.6 0.866025 0.500000i 0 0.500000 0.866025i −0.483662 0.837727i 0 −0.238876 + 2.63495i 1.00000i 0 −0.837727 0.483662i
647.7 0.866025 0.500000i 0 0.500000 0.866025i 0.450129 + 0.779646i 0 −2.62906 0.296732i 1.00000i 0 0.779646 + 0.450129i
647.8 0.866025 0.500000i 0 0.500000 0.866025i 1.80966 + 3.13442i 0 2.14611 + 1.54733i 1.00000i 0 3.13442 + 1.80966i
971.1 −0.866025 0.500000i 0 0.500000 + 0.866025i −1.14095 + 1.97618i 0 −2.64314 + 0.117551i 1.00000i 0 1.97618 1.14095i
971.2 −0.866025 0.500000i 0 0.500000 + 0.866025i −0.714925 + 1.23829i 0 2.10995 + 1.59628i 1.00000i 0 1.23829 0.714925i
971.3 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.0338034 0.0585493i 0 1.44425 + 2.21679i 1.00000i 0 −0.0585493 + 0.0338034i
971.4 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.82207 3.15592i 0 −1.04503 2.43062i 1.00000i 0 −3.15592 + 1.82207i
971.5 0.866025 + 0.500000i 0 0.500000 + 0.866025i −1.77612 + 3.07634i 0 −1.14420 + 2.38554i 1.00000i 0 −3.07634 + 1.77612i
971.6 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.483662 + 0.837727i 0 −0.238876 2.63495i 1.00000i 0 −0.837727 + 0.483662i
971.7 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0.450129 0.779646i 0 −2.62906 + 0.296732i 1.00000i 0 0.779646 0.450129i
971.8 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.80966 3.13442i 0 2.14611 1.54733i 1.00000i 0 3.13442 1.80966i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.k.b 16
3.b odd 2 1 1134.2.k.a 16
7.d odd 6 1 1134.2.k.a 16
9.c even 3 1 126.2.t.a yes 16
9.c even 3 1 378.2.l.a 16
9.d odd 6 1 126.2.l.a 16
9.d odd 6 1 378.2.t.a 16
21.g even 6 1 inner 1134.2.k.b 16
36.f odd 6 1 1008.2.df.c 16
36.f odd 6 1 3024.2.ca.c 16
36.h even 6 1 1008.2.ca.c 16
36.h even 6 1 3024.2.df.c 16
63.g even 3 1 882.2.l.b 16
63.g even 3 1 2646.2.m.b 16
63.h even 3 1 882.2.m.a 16
63.h even 3 1 2646.2.t.b 16
63.i even 6 1 126.2.t.a yes 16
63.i even 6 1 2646.2.m.b 16
63.j odd 6 1 882.2.t.a 16
63.j odd 6 1 2646.2.m.a 16
63.k odd 6 1 126.2.l.a 16
63.k odd 6 1 2646.2.m.a 16
63.l odd 6 1 882.2.t.a 16
63.l odd 6 1 2646.2.l.a 16
63.n odd 6 1 882.2.m.b 16
63.n odd 6 1 2646.2.l.a 16
63.o even 6 1 882.2.l.b 16
63.o even 6 1 2646.2.t.b 16
63.s even 6 1 378.2.l.a 16
63.s even 6 1 882.2.m.a 16
63.t odd 6 1 378.2.t.a 16
63.t odd 6 1 882.2.m.b 16
252.n even 6 1 1008.2.ca.c 16
252.r odd 6 1 1008.2.df.c 16
252.bj even 6 1 3024.2.df.c 16
252.bn odd 6 1 3024.2.ca.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.l.a 16 9.d odd 6 1
126.2.l.a 16 63.k odd 6 1
126.2.t.a yes 16 9.c even 3 1
126.2.t.a yes 16 63.i even 6 1
378.2.l.a 16 9.c even 3 1
378.2.l.a 16 63.s even 6 1
378.2.t.a 16 9.d odd 6 1
378.2.t.a 16 63.t odd 6 1
882.2.l.b 16 63.g even 3 1
882.2.l.b 16 63.o even 6 1
882.2.m.a 16 63.h even 3 1
882.2.m.a 16 63.s even 6 1
882.2.m.b 16 63.n odd 6 1
882.2.m.b 16 63.t odd 6 1
882.2.t.a 16 63.j odd 6 1
882.2.t.a 16 63.l odd 6 1
1008.2.ca.c 16 36.h even 6 1
1008.2.ca.c 16 252.n even 6 1
1008.2.df.c 16 36.f odd 6 1
1008.2.df.c 16 252.r odd 6 1
1134.2.k.a 16 3.b odd 2 1
1134.2.k.a 16 7.d odd 6 1
1134.2.k.b 16 1.a even 1 1 trivial
1134.2.k.b 16 21.g even 6 1 inner
2646.2.l.a 16 63.l odd 6 1
2646.2.l.a 16 63.n odd 6 1
2646.2.m.a 16 63.j odd 6 1
2646.2.m.a 16 63.k odd 6 1
2646.2.m.b 16 63.g even 3 1
2646.2.m.b 16 63.i even 6 1
2646.2.t.b 16 63.h even 3 1
2646.2.t.b 16 63.o even 6 1
3024.2.ca.c 16 36.f odd 6 1
3024.2.ca.c 16 252.bn odd 6 1
3024.2.df.c 16 36.h even 6 1
3024.2.df.c 16 252.bj even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516+24T514+24T513+423T512+450T511+3582T510++81 T_{5}^{16} + 24 T_{5}^{14} + 24 T_{5}^{13} + 423 T_{5}^{12} + 450 T_{5}^{11} + 3582 T_{5}^{10} + \cdots + 81 acting on S2new(1134,[χ])S_{2}^{\mathrm{new}}(1134, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+24T14++81 T^{16} + 24 T^{14} + \cdots + 81 Copy content Toggle raw display
77 T16+4T15++5764801 T^{16} + 4 T^{15} + \cdots + 5764801 Copy content Toggle raw display
1111 T1612T15++61732449 T^{16} - 12 T^{15} + \cdots + 61732449 Copy content Toggle raw display
1313 T16++390971529 T^{16} + \cdots + 390971529 Copy content Toggle raw display
1717 T1618T15++56070144 T^{16} - 18 T^{15} + \cdots + 56070144 Copy content Toggle raw display
1919 T1672T14++9199089 T^{16} - 72 T^{14} + \cdots + 9199089 Copy content Toggle raw display
2323 T16++187388721 T^{16} + \cdots + 187388721 Copy content Toggle raw display
2929 T16+108T14++1108809 T^{16} + 108 T^{14} + \cdots + 1108809 Copy content Toggle raw display
3131 T16+6T15++65610000 T^{16} + 6 T^{15} + \cdots + 65610000 Copy content Toggle raw display
3737 T16++32746159681 T^{16} + \cdots + 32746159681 Copy content Toggle raw display
4141 (T8+6T769T6++9)2 (T^{8} + 6 T^{7} - 69 T^{6} + \cdots + 9)^{2} Copy content Toggle raw display
4343 (T82T7++54769)2 (T^{8} - 2 T^{7} + \cdots + 54769)^{2} Copy content Toggle raw display
4747 T16++588203099136 T^{16} + \cdots + 588203099136 Copy content Toggle raw display
5353 T16++36759242529 T^{16} + \cdots + 36759242529 Copy content Toggle raw display
5959 T16++216504090000 T^{16} + \cdots + 216504090000 Copy content Toggle raw display
6161 T16++547560000 T^{16} + \cdots + 547560000 Copy content Toggle raw display
6767 T16++2603856784 T^{16} + \cdots + 2603856784 Copy content Toggle raw display
7171 T16+486T14++65610000 T^{16} + 486 T^{14} + \cdots + 65610000 Copy content Toggle raw display
7373 T16150T14++71115489 T^{16} - 150 T^{14} + \cdots + 71115489 Copy content Toggle raw display
7979 T16++970422010000 T^{16} + \cdots + 970422010000 Copy content Toggle raw display
8383 (T8177T6+30879)2 (T^{8} - 177 T^{6} + \cdots - 30879)^{2} Copy content Toggle raw display
8989 T16++131145120363321 T^{16} + \cdots + 131145120363321 Copy content Toggle raw display
9797 T16++9120206721024 T^{16} + \cdots + 9120206721024 Copy content Toggle raw display
show more
show less