L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (1.82 − 3.15i)5-s + (−1.04 − 2.43i)7-s − 0.999i·8-s + (−3.15 + 1.82i)10-s + (4.38 − 2.53i)11-s − 3.39i·13-s + (−0.310 + 2.62i)14-s + (−0.5 + 0.866i)16-s + (0.774 + 1.34i)17-s + (−0.707 − 0.408i)19-s + 3.64·20-s − 5.06·22-s + (1.47 + 0.850i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.814 − 1.41i)5-s + (−0.394 − 0.918i)7-s − 0.353i·8-s + (−0.997 + 0.576i)10-s + (1.32 − 0.763i)11-s − 0.942i·13-s + (−0.0829 + 0.702i)14-s + (−0.125 + 0.216i)16-s + (0.187 + 0.325i)17-s + (−0.162 − 0.0936i)19-s + 0.814·20-s − 1.08·22-s + (0.307 + 0.177i)23-s + ⋯ |
Λ(s)=(=(1134s/2ΓC(s)L(s)(−0.694+0.719i)Λ(2−s)
Λ(s)=(=(1134s/2ΓC(s+1/2)L(s)(−0.694+0.719i)Λ(1−s)
Degree: |
2 |
Conductor: |
1134
= 2⋅34⋅7
|
Sign: |
−0.694+0.719i
|
Analytic conductor: |
9.05503 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1134(971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1134, ( :1/2), −0.694+0.719i)
|
Particular Values
L(1) |
≈ |
1.363646948 |
L(21) |
≈ |
1.363646948 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(1.04+2.43i)T |
good | 5 | 1+(−1.82+3.15i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−4.38+2.53i)T+(5.5−9.52i)T2 |
| 13 | 1+3.39iT−13T2 |
| 17 | 1+(−0.774−1.34i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.707+0.408i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.47−0.850i)T+(11.5+19.9i)T2 |
| 29 | 1−4.16iT−29T2 |
| 31 | 1+(−1.87+1.08i)T+(15.5−26.8i)T2 |
| 37 | 1+(3.39−5.88i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.03T+41T2 |
| 43 | 1+6.12T+43T2 |
| 47 | 1+(3.37−5.83i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−11.4+6.63i)T+(26.5−45.8i)T2 |
| 59 | 1+(1.08+1.88i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.28−3.62i)T+(30.5+52.8i)T2 |
| 67 | 1+(1.22+2.12i)T+(−33.5+58.0i)T2 |
| 71 | 1−6.74iT−71T2 |
| 73 | 1+(−3.76+2.17i)T+(36.5−63.2i)T2 |
| 79 | 1+(6.37−11.0i)T+(−39.5−68.4i)T2 |
| 83 | 1−1.53T+83T2 |
| 89 | 1+(−6.01+10.4i)T+(−44.5−77.0i)T2 |
| 97 | 1+6.46iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.603164021001687318602312505094, −8.679279410884712435826126873305, −8.293609386828978736802009281872, −7.03963797875601418683356346067, −6.18755698841218423897451651772, −5.24342137824587487373454210089, −4.13820023230270475458365156611, −3.18479237834535183246706941090, −1.50335378199694477909762918554, −0.78649522100574018455393474614,
1.81283363127403922384824665575, 2.58443019615818561970158499760, 3.86616230121560733795598258440, 5.30677595084518369598400007395, 6.37874359774594553710056730822, 6.61802865327963926493607181051, 7.41199054308508908577839349789, 8.750147326903297542135259971849, 9.370790483215377024624496689780, 9.904481863556233706609255598190