L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.450 − 0.779i)5-s + (−2.62 + 0.296i)7-s + 0.999i·8-s + (0.779 − 0.450i)10-s + (−2.70 + 1.56i)11-s + 2.29i·13-s + (−2.42 − 1.05i)14-s + (−0.5 + 0.866i)16-s + (2.57 + 4.46i)17-s + (2.38 + 1.37i)19-s + 0.900·20-s − 3.12·22-s + (−1.48 − 0.857i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.201 − 0.348i)5-s + (−0.993 + 0.112i)7-s + 0.353i·8-s + (0.246 − 0.142i)10-s + (−0.816 + 0.471i)11-s + 0.637i·13-s + (−0.648 − 0.282i)14-s + (−0.125 + 0.216i)16-s + (0.624 + 1.08i)17-s + (0.546 + 0.315i)19-s + 0.201·20-s − 0.666·22-s + (−0.309 − 0.178i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.487 - 0.873i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.487 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.612496184\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.612496184\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.62 - 0.296i)T \) |
good | 5 | \( 1 + (-0.450 + 0.779i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.70 - 1.56i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.29iT - 13T^{2} \) |
| 17 | \( 1 + (-2.57 - 4.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.38 - 1.37i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.48 + 0.857i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.14iT - 29T^{2} \) |
| 31 | \( 1 + (8.66 - 5.00i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.73 - 8.20i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.44T + 41T^{2} \) |
| 43 | \( 1 - 0.546T + 43T^{2} \) |
| 47 | \( 1 + (-3.93 + 6.80i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-12.0 + 6.97i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.99 - 6.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.28 + 3.62i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.83 + 3.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.1iT - 71T^{2} \) |
| 73 | \( 1 + (10.9 - 6.30i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.27 + 5.67i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 0.368T + 83T^{2} \) |
| 89 | \( 1 + (6.00 - 10.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 10.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12794580574648473236675061707, −9.206425215636960151544062294430, −8.442922552033291447411521812741, −7.38336185633398085074446134693, −6.74707878490074682143338203472, −5.70982389755336639664348091219, −5.15416162332411380216659341377, −3.92302190667863973191657356313, −3.11766521277367553024933763863, −1.76703480821193348239996434520,
0.55097140676230452440329169381, 2.50746173863055204990334181303, 3.11354808998481474429968216383, 4.13061619961559064633220477550, 5.52370490206335629590936618343, 5.79752404335221283183794960601, 7.07358712923906120822873211348, 7.61477115340852376775612444464, 8.952780666251753766129729825372, 9.741259927841432134158453909525