L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.450 − 0.779i)5-s + (−2.62 + 0.296i)7-s + 0.999i·8-s + (0.779 − 0.450i)10-s + (−2.70 + 1.56i)11-s + 2.29i·13-s + (−2.42 − 1.05i)14-s + (−0.5 + 0.866i)16-s + (2.57 + 4.46i)17-s + (2.38 + 1.37i)19-s + 0.900·20-s − 3.12·22-s + (−1.48 − 0.857i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.201 − 0.348i)5-s + (−0.993 + 0.112i)7-s + 0.353i·8-s + (0.246 − 0.142i)10-s + (−0.816 + 0.471i)11-s + 0.637i·13-s + (−0.648 − 0.282i)14-s + (−0.125 + 0.216i)16-s + (0.624 + 1.08i)17-s + (0.546 + 0.315i)19-s + 0.201·20-s − 0.666·22-s + (−0.309 − 0.178i)23-s + ⋯ |
Λ(s)=(=(1134s/2ΓC(s)L(s)(−0.487−0.873i)Λ(2−s)
Λ(s)=(=(1134s/2ΓC(s+1/2)L(s)(−0.487−0.873i)Λ(1−s)
Degree: |
2 |
Conductor: |
1134
= 2⋅34⋅7
|
Sign: |
−0.487−0.873i
|
Analytic conductor: |
9.05503 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1134(971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1134, ( :1/2), −0.487−0.873i)
|
Particular Values
L(1) |
≈ |
1.612496184 |
L(21) |
≈ |
1.612496184 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(2.62−0.296i)T |
good | 5 | 1+(−0.450+0.779i)T+(−2.5−4.33i)T2 |
| 11 | 1+(2.70−1.56i)T+(5.5−9.52i)T2 |
| 13 | 1−2.29iT−13T2 |
| 17 | 1+(−2.57−4.46i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.38−1.37i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.48+0.857i)T+(11.5+19.9i)T2 |
| 29 | 1−2.14iT−29T2 |
| 31 | 1+(8.66−5.00i)T+(15.5−26.8i)T2 |
| 37 | 1+(4.73−8.20i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.44T+41T2 |
| 43 | 1−0.546T+43T2 |
| 47 | 1+(−3.93+6.80i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−12.0+6.97i)T+(26.5−45.8i)T2 |
| 59 | 1+(−3.99−6.91i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.28+3.62i)T+(30.5+52.8i)T2 |
| 67 | 1+(1.83+3.17i)T+(−33.5+58.0i)T2 |
| 71 | 1+14.1iT−71T2 |
| 73 | 1+(10.9−6.30i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3.27+5.67i)T+(−39.5−68.4i)T2 |
| 83 | 1−0.368T+83T2 |
| 89 | 1+(6.00−10.3i)T+(−44.5−77.0i)T2 |
| 97 | 1−10.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12794580574648473236675061707, −9.206425215636960151544062294430, −8.442922552033291447411521812741, −7.38336185633398085074446134693, −6.74707878490074682143338203472, −5.70982389755336639664348091219, −5.15416162332411380216659341377, −3.92302190667863973191657356313, −3.11766521277367553024933763863, −1.76703480821193348239996434520,
0.55097140676230452440329169381, 2.50746173863055204990334181303, 3.11354808998481474429968216383, 4.13061619961559064633220477550, 5.52370490206335629590936618343, 5.79752404335221283183794960601, 7.07358712923906120822873211348, 7.61477115340852376775612444464, 8.952780666251753766129729825372, 9.741259927841432134158453909525