L(s) = 1 | + (0.866 + 0.5i)2-s + (−1.43 − 0.974i)3-s + (0.499 + 0.866i)4-s + (1.80 + 3.13i)5-s + (−0.752 − 1.56i)6-s + 0.999i·8-s + (1.09 + 2.79i)9-s + 3.61i·10-s + (1.73 + 1.00i)11-s + (0.128 − 1.72i)12-s + (−2.95 + 1.70i)13-s + (0.465 − 6.25i)15-s + (−0.5 + 0.866i)16-s − 6.17·17-s + (−0.443 + 2.96i)18-s − 1.01i·19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.826 − 0.562i)3-s + (0.249 + 0.433i)4-s + (0.809 + 1.40i)5-s + (−0.307 − 0.636i)6-s + 0.353i·8-s + (0.366 + 0.930i)9-s + 1.14i·10-s + (0.523 + 0.302i)11-s + (0.0370 − 0.498i)12-s + (−0.818 + 0.472i)13-s + (0.120 − 1.61i)15-s + (−0.125 + 0.216i)16-s − 1.49·17-s + (−0.104 + 0.699i)18-s − 0.232i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.380 - 0.924i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.380 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.927027 + 1.38436i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.927027 + 1.38436i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (1.43 + 0.974i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.80 - 3.13i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.73 - 1.00i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.95 - 1.70i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.17T + 17T^{2} \) |
| 19 | \( 1 + 1.01iT - 19T^{2} \) |
| 23 | \( 1 + (-2.62 + 1.51i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.04 - 2.91i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.787 - 0.454i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.33T + 37T^{2} \) |
| 41 | \( 1 + (-2.85 - 4.93i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.39 - 4.15i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.11 - 1.93i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.75iT - 53T^{2} \) |
| 59 | \( 1 + (-4.49 - 7.78i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12.7 - 7.35i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.15 - 7.20i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.466iT - 71T^{2} \) |
| 73 | \( 1 + 4.21iT - 73T^{2} \) |
| 79 | \( 1 + (1.91 - 3.31i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.00 + 6.93i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 4.78T + 89T^{2} \) |
| 97 | \( 1 + (-10.1 - 5.87i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57751045733297337845414752165, −9.798696678894867559059629135043, −8.617244276082340623668369846115, −7.19488071405138763785813960169, −6.82566158608493545443465218754, −6.34600139761686583724180822589, −5.25725095354072948809471964427, −4.36992601418983523471842980006, −2.81252123522069729099111091976, −1.95015782165380097366666035260,
0.70851202143179514066166979933, 2.09869144020704641469760301887, 3.75098772698276330874985606113, 4.76388454176543541952920592719, 5.19913988176945092250309426266, 6.07853671439369510104895434598, 6.93038622058270277643828907729, 8.538916191966004959357691931868, 9.247059390313089784074567353015, 9.929699104273912930654693215417