L(s) = 1 | + (0.866 + 0.5i)2-s + (−1.43 − 0.974i)3-s + (0.499 + 0.866i)4-s + (1.80 + 3.13i)5-s + (−0.752 − 1.56i)6-s + 0.999i·8-s + (1.09 + 2.79i)9-s + 3.61i·10-s + (1.73 + 1.00i)11-s + (0.128 − 1.72i)12-s + (−2.95 + 1.70i)13-s + (0.465 − 6.25i)15-s + (−0.5 + 0.866i)16-s − 6.17·17-s + (−0.443 + 2.96i)18-s − 1.01i·19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.826 − 0.562i)3-s + (0.249 + 0.433i)4-s + (0.809 + 1.40i)5-s + (−0.307 − 0.636i)6-s + 0.353i·8-s + (0.366 + 0.930i)9-s + 1.14i·10-s + (0.523 + 0.302i)11-s + (0.0370 − 0.498i)12-s + (−0.818 + 0.472i)13-s + (0.120 − 1.61i)15-s + (−0.125 + 0.216i)16-s − 1.49·17-s + (−0.104 + 0.699i)18-s − 0.232i·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.380−0.924i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.380−0.924i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.380−0.924i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.380−0.924i)
|
Particular Values
L(1) |
≈ |
0.927027+1.38436i |
L(21) |
≈ |
0.927027+1.38436i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(1.43+0.974i)T |
| 7 | 1 |
good | 5 | 1+(−1.80−3.13i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.73−1.00i)T+(5.5+9.52i)T2 |
| 13 | 1+(2.95−1.70i)T+(6.5−11.2i)T2 |
| 17 | 1+6.17T+17T2 |
| 19 | 1+1.01iT−19T2 |
| 23 | 1+(−2.62+1.51i)T+(11.5−19.9i)T2 |
| 29 | 1+(−5.04−2.91i)T+(14.5+25.1i)T2 |
| 31 | 1+(0.787−0.454i)T+(15.5−26.8i)T2 |
| 37 | 1+7.33T+37T2 |
| 41 | 1+(−2.85−4.93i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.39−4.15i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.11−1.93i)T+(−23.5−40.7i)T2 |
| 53 | 1+8.75iT−53T2 |
| 59 | 1+(−4.49−7.78i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−12.7−7.35i)T+(30.5+52.8i)T2 |
| 67 | 1+(−4.15−7.20i)T+(−33.5+58.0i)T2 |
| 71 | 1+0.466iT−71T2 |
| 73 | 1+4.21iT−73T2 |
| 79 | 1+(1.91−3.31i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−4.00+6.93i)T+(−41.5−71.8i)T2 |
| 89 | 1+4.78T+89T2 |
| 97 | 1+(−10.1−5.87i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57751045733297337845414752165, −9.798696678894867559059629135043, −8.617244276082340623668369846115, −7.19488071405138763785813960169, −6.82566158608493545443465218754, −6.34600139761686583724180822589, −5.25725095354072948809471964427, −4.36992601418983523471842980006, −2.81252123522069729099111091976, −1.95015782165380097366666035260,
0.70851202143179514066166979933, 2.09869144020704641469760301887, 3.75098772698276330874985606113, 4.76388454176543541952920592719, 5.19913988176945092250309426266, 6.07853671439369510104895434598, 6.93038622058270277643828907729, 8.538916191966004959357691931868, 9.247059390313089784074567353015, 9.929699104273912930654693215417