L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.840 − 1.51i)3-s + (0.499 + 0.866i)4-s + (−1.14 − 1.97i)5-s + (−1.48 + 0.890i)6-s − 0.999i·8-s + (−1.58 − 2.54i)9-s + 2.28i·10-s + (0.946 + 0.546i)11-s + (1.73 − 0.0288i)12-s + (−5.91 + 3.41i)13-s + (−3.95 + 0.0659i)15-s + (−0.5 + 0.866i)16-s − 6.71·17-s + (0.100 + 2.99i)18-s + 2.86i·19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.485 − 0.874i)3-s + (0.249 + 0.433i)4-s + (−0.510 − 0.883i)5-s + (−0.606 + 0.363i)6-s − 0.353i·8-s + (−0.528 − 0.848i)9-s + 0.721i·10-s + (0.285 + 0.164i)11-s + (0.499 − 0.00833i)12-s + (−1.64 + 0.947i)13-s + (−1.02 + 0.0170i)15-s + (−0.125 + 0.216i)16-s − 1.62·17-s + (0.0235 + 0.706i)18-s + 0.656i·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.541−0.840i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.541−0.840i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.541−0.840i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(587,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.541−0.840i)
|
Particular Values
L(1) |
≈ |
0.133648+0.245150i |
L(21) |
≈ |
0.133648+0.245150i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(−0.840+1.51i)T |
| 7 | 1 |
good | 5 | 1+(1.14+1.97i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.946−0.546i)T+(5.5+9.52i)T2 |
| 13 | 1+(5.91−3.41i)T+(6.5−11.2i)T2 |
| 17 | 1+6.71T+17T2 |
| 19 | 1−2.86iT−19T2 |
| 23 | 1+(−3.38+1.95i)T+(11.5−19.9i)T2 |
| 29 | 1+(−1.59−0.923i)T+(14.5+25.1i)T2 |
| 31 | 1+(−1.75+1.01i)T+(15.5−26.8i)T2 |
| 37 | 1+7.15T+37T2 |
| 41 | 1+(2.45+4.25i)T+(−20.5+35.5i)T2 |
| 43 | 1+(3.74−6.48i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.40+5.89i)T+(−23.5−40.7i)T2 |
| 53 | 1+0.256iT−53T2 |
| 59 | 1+(−0.971−1.68i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.15+0.665i)T+(30.5+52.8i)T2 |
| 67 | 1+(2.54+4.41i)T+(−33.5+58.0i)T2 |
| 71 | 1−0.233iT−71T2 |
| 73 | 1−6.80iT−73T2 |
| 79 | 1+(−3.63+6.29i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2.91+5.04i)T+(−41.5−71.8i)T2 |
| 89 | 1+17.9T+89T2 |
| 97 | 1+(−4.13−2.38i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.241302835741551991414842855411, −8.821078333816573405177922383856, −8.057824066414067971797691373125, −7.10013354275110958833298409326, −6.60294184283833517227098768482, −4.94685382976240457570866855140, −4.05245621417163986564831583246, −2.61015450832487647447106124394, −1.67227103743167397777366654968, −0.14450537563267645837624514832,
2.42321148796471604156262472023, 3.20672893417548505597648043644, 4.52846018266756996967629463848, 5.33766169099911222646180482486, 6.75976740953751911663446975196, 7.31287480378699861326795270528, 8.257243800522305974200532074160, 9.041567948508120191850455083910, 9.793430093534675029083363816847, 10.61091306832712292988541090626