Properties

Label 2-882-63.20-c1-0-37
Degree 22
Conductor 882882
Sign 0.5410.840i-0.541 - 0.840i
Analytic cond. 7.042807.04280
Root an. cond. 2.653822.65382
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.840 − 1.51i)3-s + (0.499 + 0.866i)4-s + (−1.14 − 1.97i)5-s + (−1.48 + 0.890i)6-s − 0.999i·8-s + (−1.58 − 2.54i)9-s + 2.28i·10-s + (0.946 + 0.546i)11-s + (1.73 − 0.0288i)12-s + (−5.91 + 3.41i)13-s + (−3.95 + 0.0659i)15-s + (−0.5 + 0.866i)16-s − 6.71·17-s + (0.100 + 2.99i)18-s + 2.86i·19-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.485 − 0.874i)3-s + (0.249 + 0.433i)4-s + (−0.510 − 0.883i)5-s + (−0.606 + 0.363i)6-s − 0.353i·8-s + (−0.528 − 0.848i)9-s + 0.721i·10-s + (0.285 + 0.164i)11-s + (0.499 − 0.00833i)12-s + (−1.64 + 0.947i)13-s + (−1.02 + 0.0170i)15-s + (−0.125 + 0.216i)16-s − 1.62·17-s + (0.0235 + 0.706i)18-s + 0.656i·19-s + ⋯

Functional equation

Λ(s)=(882s/2ΓC(s)L(s)=((0.5410.840i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.541 - 0.840i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(882s/2ΓC(s+1/2)L(s)=((0.5410.840i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.541 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 882882    =    232722 \cdot 3^{2} \cdot 7^{2}
Sign: 0.5410.840i-0.541 - 0.840i
Analytic conductor: 7.042807.04280
Root analytic conductor: 2.653822.65382
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ882(587,)\chi_{882} (587, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 882, ( :1/2), 0.5410.840i)(2,\ 882,\ (\ :1/2),\ -0.541 - 0.840i)

Particular Values

L(1)L(1) \approx 0.133648+0.245150i0.133648 + 0.245150i
L(12)L(\frac12) \approx 0.133648+0.245150i0.133648 + 0.245150i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
3 1+(0.840+1.51i)T 1 + (-0.840 + 1.51i)T
7 1 1
good5 1+(1.14+1.97i)T+(2.5+4.33i)T2 1 + (1.14 + 1.97i)T + (-2.5 + 4.33i)T^{2}
11 1+(0.9460.546i)T+(5.5+9.52i)T2 1 + (-0.946 - 0.546i)T + (5.5 + 9.52i)T^{2}
13 1+(5.913.41i)T+(6.511.2i)T2 1 + (5.91 - 3.41i)T + (6.5 - 11.2i)T^{2}
17 1+6.71T+17T2 1 + 6.71T + 17T^{2}
19 12.86iT19T2 1 - 2.86iT - 19T^{2}
23 1+(3.38+1.95i)T+(11.519.9i)T2 1 + (-3.38 + 1.95i)T + (11.5 - 19.9i)T^{2}
29 1+(1.590.923i)T+(14.5+25.1i)T2 1 + (-1.59 - 0.923i)T + (14.5 + 25.1i)T^{2}
31 1+(1.75+1.01i)T+(15.526.8i)T2 1 + (-1.75 + 1.01i)T + (15.5 - 26.8i)T^{2}
37 1+7.15T+37T2 1 + 7.15T + 37T^{2}
41 1+(2.45+4.25i)T+(20.5+35.5i)T2 1 + (2.45 + 4.25i)T + (-20.5 + 35.5i)T^{2}
43 1+(3.746.48i)T+(21.537.2i)T2 1 + (3.74 - 6.48i)T + (-21.5 - 37.2i)T^{2}
47 1+(3.40+5.89i)T+(23.540.7i)T2 1 + (-3.40 + 5.89i)T + (-23.5 - 40.7i)T^{2}
53 1+0.256iT53T2 1 + 0.256iT - 53T^{2}
59 1+(0.9711.68i)T+(29.5+51.0i)T2 1 + (-0.971 - 1.68i)T + (-29.5 + 51.0i)T^{2}
61 1+(1.15+0.665i)T+(30.5+52.8i)T2 1 + (1.15 + 0.665i)T + (30.5 + 52.8i)T^{2}
67 1+(2.54+4.41i)T+(33.5+58.0i)T2 1 + (2.54 + 4.41i)T + (-33.5 + 58.0i)T^{2}
71 10.233iT71T2 1 - 0.233iT - 71T^{2}
73 16.80iT73T2 1 - 6.80iT - 73T^{2}
79 1+(3.63+6.29i)T+(39.568.4i)T2 1 + (-3.63 + 6.29i)T + (-39.5 - 68.4i)T^{2}
83 1+(2.91+5.04i)T+(41.571.8i)T2 1 + (-2.91 + 5.04i)T + (-41.5 - 71.8i)T^{2}
89 1+17.9T+89T2 1 + 17.9T + 89T^{2}
97 1+(4.132.38i)T+(48.5+84.0i)T2 1 + (-4.13 - 2.38i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.241302835741551991414842855411, −8.821078333816573405177922383856, −8.057824066414067971797691373125, −7.10013354275110958833298409326, −6.60294184283833517227098768482, −4.94685382976240457570866855140, −4.05245621417163986564831583246, −2.61015450832487647447106124394, −1.67227103743167397777366654968, −0.14450537563267645837624514832, 2.42321148796471604156262472023, 3.20672893417548505597648043644, 4.52846018266756996967629463848, 5.33766169099911222646180482486, 6.75976740953751911663446975196, 7.31287480378699861326795270528, 8.257243800522305974200532074160, 9.041567948508120191850455083910, 9.793430093534675029083363816847, 10.61091306832712292988541090626

Graph of the ZZ-function along the critical line