L(s) = 1 | + (−1.73 − 0.0184i)3-s + (0.790 + 1.36i)5-s + (−2.57 + 0.601i)7-s + (2.99 + 0.0640i)9-s + (2.58 − 4.47i)11-s + (−0.681 + 1.18i)13-s + (−1.34 − 2.38i)15-s + (−2.30 − 3.99i)17-s + (−0.0321 + 0.0557i)19-s + (4.47 − 0.994i)21-s + (3.37 + 5.84i)23-s + (1.24 − 2.16i)25-s + (−5.19 − 0.166i)27-s + (4.70 + 8.15i)29-s + 2.66·31-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.0106i)3-s + (0.353 + 0.612i)5-s + (−0.973 + 0.227i)7-s + (0.999 + 0.0213i)9-s + (0.779 − 1.35i)11-s + (−0.189 + 0.327i)13-s + (−0.347 − 0.616i)15-s + (−0.559 − 0.969i)17-s + (−0.00738 + 0.0127i)19-s + (0.976 − 0.216i)21-s + (0.703 + 1.21i)23-s + (0.249 − 0.432i)25-s + (−0.999 − 0.0320i)27-s + (0.874 + 1.51i)29-s + 0.478·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.088412129\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.088412129\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.73 + 0.0184i)T \) |
| 7 | \( 1 + (2.57 - 0.601i)T \) |
good | 5 | \( 1 + (-0.790 - 1.36i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.58 + 4.47i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.681 - 1.18i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.30 + 3.99i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.0321 - 0.0557i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.37 - 5.84i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.70 - 8.15i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.66T + 31T^{2} \) |
| 37 | \( 1 + (-0.880 + 1.52i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.858 - 1.48i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.12 - 8.86i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.20T + 47T^{2} \) |
| 53 | \( 1 + (0.479 + 0.831i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 9.33T + 59T^{2} \) |
| 61 | \( 1 - 14.3T + 61T^{2} \) |
| 67 | \( 1 - 12.4T + 67T^{2} \) |
| 71 | \( 1 - 4.49T + 71T^{2} \) |
| 73 | \( 1 + (0.941 + 1.63i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 6.53T + 79T^{2} \) |
| 83 | \( 1 + (-5.08 - 8.81i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.12 - 7.14i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.26 + 12.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.960862643310531676635929750921, −9.447311441026437789235168750223, −8.500558419834844306407211515887, −6.95898102527743685785105458607, −6.70049516348071958728458025582, −5.87266391119547836949464398066, −4.99317958180120288338840615843, −3.68893396162874186594086168063, −2.73048240598811405082632134286, −0.943881466082071393086063855300,
0.794758937268402733944326751915, 2.21781919861293584544449991931, 3.96479453547305414648603663885, 4.63503644843900516965213782972, 5.63799641966201589040989315941, 6.63651327247862392936929314184, 6.93635700792709662094482723227, 8.312604269256964289706021756568, 9.334225332392388090437961821072, 9.977189117870323698851141178951