L(s) = 1 | + (1.37 − 0.347i)2-s + (1.75 − 0.952i)4-s + (−0.111 + 0.111i)5-s + 7-s + (2.07 − 1.91i)8-s + (−0.114 + 0.191i)10-s + (3.61 + 3.61i)11-s + (−1.94 + 1.94i)13-s + (1.37 − 0.347i)14-s + (2.18 − 3.35i)16-s − 4.79i·17-s + (3.03 + 3.03i)19-s + (−0.0897 + 0.302i)20-s + (6.20 + 3.69i)22-s − 6.58i·23-s + ⋯ |
L(s) = 1 | + (0.969 − 0.245i)2-s + (0.879 − 0.476i)4-s + (−0.0498 + 0.0498i)5-s + 0.377·7-s + (0.735 − 0.677i)8-s + (−0.0360 + 0.0605i)10-s + (1.08 + 1.08i)11-s + (−0.539 + 0.539i)13-s + (0.366 − 0.0928i)14-s + (0.546 − 0.837i)16-s − 1.16i·17-s + (0.695 + 0.695i)19-s + (−0.0200 + 0.0675i)20-s + (1.32 + 0.788i)22-s − 1.37i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 + 0.347i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.937 + 0.347i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.241542273\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.241542273\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.347i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 + (0.111 - 0.111i)T - 5iT^{2} \) |
| 11 | \( 1 + (-3.61 - 3.61i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.94 - 1.94i)T - 13iT^{2} \) |
| 17 | \( 1 + 4.79iT - 17T^{2} \) |
| 19 | \( 1 + (-3.03 - 3.03i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.58iT - 23T^{2} \) |
| 29 | \( 1 + (-1.53 - 1.53i)T + 29iT^{2} \) |
| 31 | \( 1 + 3.26iT - 31T^{2} \) |
| 37 | \( 1 + (-1.05 - 1.05i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.26T + 41T^{2} \) |
| 43 | \( 1 + (-0.484 + 0.484i)T - 43iT^{2} \) |
| 47 | \( 1 + 11.2T + 47T^{2} \) |
| 53 | \( 1 + (-4.00 + 4.00i)T - 53iT^{2} \) |
| 59 | \( 1 + (7.61 + 7.61i)T + 59iT^{2} \) |
| 61 | \( 1 + (-5.44 + 5.44i)T - 61iT^{2} \) |
| 67 | \( 1 + (0.897 + 0.897i)T + 67iT^{2} \) |
| 71 | \( 1 + 2.83iT - 71T^{2} \) |
| 73 | \( 1 - 15.7iT - 73T^{2} \) |
| 79 | \( 1 - 15.4iT - 79T^{2} \) |
| 83 | \( 1 + (7.57 - 7.57i)T - 83iT^{2} \) |
| 89 | \( 1 - 13.1T + 89T^{2} \) |
| 97 | \( 1 + 10.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.812507205296599539080500944229, −9.489364273118675161292556915110, −8.067529668863667604215525919610, −7.02847124278632703082117078351, −6.65465539180193336527595129732, −5.31518956503397593764839860770, −4.64618699035593809505245793976, −3.78155629384934498240161703692, −2.53800516235328119932742148681, −1.44791285681641722255307886889,
1.44519168101339132870353666056, 2.94039190550214937527690944843, 3.78942949687504357775809196919, 4.77328732952723708854015733287, 5.73215949074780299190583760278, 6.39326550860314895947563093863, 7.41278466759342619008203020164, 8.184756685403063109394023631639, 9.012559894220876219726968545168, 10.21253459170271093037905716886