L(s) = 1 | + 2.61i·3-s + 3.41i·5-s + 1.53·7-s − 3.82·9-s + 4.77i·11-s − 0.585i·13-s − 8.92·15-s − 2.82·17-s − 0.448i·19-s + 4i·21-s + 5.86·23-s − 6.65·25-s − 2.16i·27-s − 4.58i·29-s + 7.39·31-s + ⋯ |
L(s) = 1 | + 1.50i·3-s + 1.52i·5-s + 0.578·7-s − 1.27·9-s + 1.44i·11-s − 0.162i·13-s − 2.30·15-s − 0.685·17-s − 0.102i·19-s + 0.872i·21-s + 1.22·23-s − 1.33·25-s − 0.416i·27-s − 0.851i·29-s + 1.32·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.574670171\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.574670171\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 2.61iT - 3T^{2} \) |
| 5 | \( 1 - 3.41iT - 5T^{2} \) |
| 7 | \( 1 - 1.53T + 7T^{2} \) |
| 11 | \( 1 - 4.77iT - 11T^{2} \) |
| 13 | \( 1 + 0.585iT - 13T^{2} \) |
| 17 | \( 1 + 2.82T + 17T^{2} \) |
| 19 | \( 1 + 0.448iT - 19T^{2} \) |
| 23 | \( 1 - 5.86T + 23T^{2} \) |
| 29 | \( 1 + 4.58iT - 29T^{2} \) |
| 31 | \( 1 - 7.39T + 31T^{2} \) |
| 37 | \( 1 + 5.07iT - 37T^{2} \) |
| 41 | \( 1 - 4T + 41T^{2} \) |
| 43 | \( 1 - 2.61iT - 43T^{2} \) |
| 47 | \( 1 - 7.39T + 47T^{2} \) |
| 53 | \( 1 - 7.41iT - 53T^{2} \) |
| 59 | \( 1 + 2.61iT - 59T^{2} \) |
| 61 | \( 1 + 13.0iT - 61T^{2} \) |
| 67 | \( 1 + 10.0iT - 67T^{2} \) |
| 71 | \( 1 + 11.9T + 71T^{2} \) |
| 73 | \( 1 + 10.4T + 73T^{2} \) |
| 79 | \( 1 - 6.12T + 79T^{2} \) |
| 83 | \( 1 - 3.50iT - 83T^{2} \) |
| 89 | \( 1 - 0.828T + 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38335039989596243467772507723, −9.718874575587741754632700504515, −9.021153329597115761346955158949, −7.77936374225031226099961616133, −7.02936150945788513967802979307, −6.08541524716117397683998773820, −4.82565910318275062351544191626, −4.32885288161913632559807493785, −3.19595605589059963400216967706, −2.28332866909072352122555587152,
0.77605242185660220359820470352, 1.45758768056496823398091512716, 2.82400656246198114403080816276, 4.39054769868073767882556639139, 5.31645085544655278637911253053, 6.13142259197141154307685108635, 7.07074992061621501700243996567, 8.002747256233435195310877575609, 8.663746969624410865309688894493, 8.965492516967318121868438038053