L(s) = 1 | + 2.61i·3-s + 3.41i·5-s + 1.53·7-s − 3.82·9-s + 4.77i·11-s − 0.585i·13-s − 8.92·15-s − 2.82·17-s − 0.448i·19-s + 4i·21-s + 5.86·23-s − 6.65·25-s − 2.16i·27-s − 4.58i·29-s + 7.39·31-s + ⋯ |
L(s) = 1 | + 1.50i·3-s + 1.52i·5-s + 0.578·7-s − 1.27·9-s + 1.44i·11-s − 0.162i·13-s − 2.30·15-s − 0.685·17-s − 0.102i·19-s + 0.872i·21-s + 1.22·23-s − 1.33·25-s − 0.416i·27-s − 0.851i·29-s + 1.32·31-s + ⋯ |
Λ(s)=(=(1024s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1024s/2ΓC(s+1/2)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
1024
= 210
|
Sign: |
−1
|
Analytic conductor: |
8.17668 |
Root analytic conductor: |
2.85948 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1024(513,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1024, ( :1/2), −1)
|
Particular Values
L(1) |
≈ |
1.574670171 |
L(21) |
≈ |
1.574670171 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−2.61iT−3T2 |
| 5 | 1−3.41iT−5T2 |
| 7 | 1−1.53T+7T2 |
| 11 | 1−4.77iT−11T2 |
| 13 | 1+0.585iT−13T2 |
| 17 | 1+2.82T+17T2 |
| 19 | 1+0.448iT−19T2 |
| 23 | 1−5.86T+23T2 |
| 29 | 1+4.58iT−29T2 |
| 31 | 1−7.39T+31T2 |
| 37 | 1+5.07iT−37T2 |
| 41 | 1−4T+41T2 |
| 43 | 1−2.61iT−43T2 |
| 47 | 1−7.39T+47T2 |
| 53 | 1−7.41iT−53T2 |
| 59 | 1+2.61iT−59T2 |
| 61 | 1+13.0iT−61T2 |
| 67 | 1+10.0iT−67T2 |
| 71 | 1+11.9T+71T2 |
| 73 | 1+10.4T+73T2 |
| 79 | 1−6.12T+79T2 |
| 83 | 1−3.50iT−83T2 |
| 89 | 1−0.828T+89T2 |
| 97 | 1−10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38335039989596243467772507723, −9.718874575587741754632700504515, −9.021153329597115761346955158949, −7.77936374225031226099961616133, −7.02936150945788513967802979307, −6.08541524716117397683998773820, −4.82565910318275062351544191626, −4.32885288161913632559807493785, −3.19595605589059963400216967706, −2.28332866909072352122555587152,
0.77605242185660220359820470352, 1.45758768056496823398091512716, 2.82400656246198114403080816276, 4.39054769868073767882556639139, 5.31645085544655278637911253053, 6.13142259197141154307685108635, 7.07074992061621501700243996567, 8.002747256233435195310877575609, 8.663746969624410865309688894493, 8.965492516967318121868438038053