Properties

Label 2-2e10-8.5-c1-0-6
Degree $2$
Conductor $1024$
Sign $-1$
Analytic cond. $8.17668$
Root an. cond. $2.85948$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61i·3-s + 3.41i·5-s + 1.53·7-s − 3.82·9-s + 4.77i·11-s − 0.585i·13-s − 8.92·15-s − 2.82·17-s − 0.448i·19-s + 4i·21-s + 5.86·23-s − 6.65·25-s − 2.16i·27-s − 4.58i·29-s + 7.39·31-s + ⋯
L(s)  = 1  + 1.50i·3-s + 1.52i·5-s + 0.578·7-s − 1.27·9-s + 1.44i·11-s − 0.162i·13-s − 2.30·15-s − 0.685·17-s − 0.102i·19-s + 0.872i·21-s + 1.22·23-s − 1.33·25-s − 0.416i·27-s − 0.851i·29-s + 1.32·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $-1$
Analytic conductor: \(8.17668\)
Root analytic conductor: \(2.85948\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1024} (513, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1024,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.574670171\)
\(L(\frac12)\) \(\approx\) \(1.574670171\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 2.61iT - 3T^{2} \)
5 \( 1 - 3.41iT - 5T^{2} \)
7 \( 1 - 1.53T + 7T^{2} \)
11 \( 1 - 4.77iT - 11T^{2} \)
13 \( 1 + 0.585iT - 13T^{2} \)
17 \( 1 + 2.82T + 17T^{2} \)
19 \( 1 + 0.448iT - 19T^{2} \)
23 \( 1 - 5.86T + 23T^{2} \)
29 \( 1 + 4.58iT - 29T^{2} \)
31 \( 1 - 7.39T + 31T^{2} \)
37 \( 1 + 5.07iT - 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 2.61iT - 43T^{2} \)
47 \( 1 - 7.39T + 47T^{2} \)
53 \( 1 - 7.41iT - 53T^{2} \)
59 \( 1 + 2.61iT - 59T^{2} \)
61 \( 1 + 13.0iT - 61T^{2} \)
67 \( 1 + 10.0iT - 67T^{2} \)
71 \( 1 + 11.9T + 71T^{2} \)
73 \( 1 + 10.4T + 73T^{2} \)
79 \( 1 - 6.12T + 79T^{2} \)
83 \( 1 - 3.50iT - 83T^{2} \)
89 \( 1 - 0.828T + 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38335039989596243467772507723, −9.718874575587741754632700504515, −9.021153329597115761346955158949, −7.77936374225031226099961616133, −7.02936150945788513967802979307, −6.08541524716117397683998773820, −4.82565910318275062351544191626, −4.32885288161913632559807493785, −3.19595605589059963400216967706, −2.28332866909072352122555587152, 0.77605242185660220359820470352, 1.45758768056496823398091512716, 2.82400656246198114403080816276, 4.39054769868073767882556639139, 5.31645085544655278637911253053, 6.13142259197141154307685108635, 7.07074992061621501700243996567, 8.002747256233435195310877575609, 8.663746969624410865309688894493, 8.965492516967318121868438038053

Graph of the $Z$-function along the critical line