Properties

Label 1024.2.b.g
Level $1024$
Weight $2$
Character orbit 1024.b
Analytic conductor $8.177$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1024,2,Mod(513,1024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1024, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1024.513");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 512)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + \beta_1 q^{5} - \beta_{3} q^{7} + ( - \beta_{5} - 1) q^{9} + ( - \beta_{6} - \beta_{2}) q^{11} - \beta_{4} q^{13} + (\beta_{7} + \beta_{3}) q^{15} - \beta_{5} q^{17} + ( - \beta_{6} + \beta_{2}) q^{19}+ \cdots + 7 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{25} - 32 q^{33} + 32 q^{41} + 8 q^{49} + 32 q^{57} + 16 q^{65} - 16 q^{73} - 24 q^{81} - 16 q^{89} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{16}^{6} + 2\zeta_{16}^{4} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{7} + \zeta_{16}^{5} + \zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{16}^{5} + 2\zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{16}^{6} + 2\zeta_{16}^{4} - \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -2\zeta_{16}^{6} + 2\zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\zeta_{16}^{7} + 2\zeta_{16}^{5} + 2\zeta_{16}^{3} - 2\zeta_{16} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -4\zeta_{16}^{7} + 4\zeta_{16} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{7} - \beta_{6} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{6} + 2\beta_{3} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( ( \beta_{4} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( \beta_{6} - 2\beta_{3} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{5} - \beta_{4} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{6} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1023\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
513.1
−0.923880 + 0.382683i
0.923880 + 0.382683i
0.382683 + 0.923880i
−0.382683 + 0.923880i
−0.382683 0.923880i
0.382683 0.923880i
0.923880 0.382683i
−0.923880 0.382683i
0 2.61313i 0 3.41421i 0 1.53073 0 −3.82843 0
513.2 0 2.61313i 0 3.41421i 0 −1.53073 0 −3.82843 0
513.3 0 1.08239i 0 0.585786i 0 3.69552 0 1.82843 0
513.4 0 1.08239i 0 0.585786i 0 −3.69552 0 1.82843 0
513.5 0 1.08239i 0 0.585786i 0 −3.69552 0 1.82843 0
513.6 0 1.08239i 0 0.585786i 0 3.69552 0 1.82843 0
513.7 0 2.61313i 0 3.41421i 0 −1.53073 0 −3.82843 0
513.8 0 2.61313i 0 3.41421i 0 1.53073 0 −3.82843 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 513.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.2.b.g 8
4.b odd 2 1 inner 1024.2.b.g 8
8.b even 2 1 inner 1024.2.b.g 8
8.d odd 2 1 inner 1024.2.b.g 8
16.e even 4 1 1024.2.a.h 4
16.e even 4 1 1024.2.a.i 4
16.f odd 4 1 1024.2.a.h 4
16.f odd 4 1 1024.2.a.i 4
32.g even 8 2 512.2.e.i 8
32.g even 8 2 512.2.e.j yes 8
32.h odd 8 2 512.2.e.i 8
32.h odd 8 2 512.2.e.j yes 8
48.i odd 4 1 9216.2.a.w 4
48.i odd 4 1 9216.2.a.bp 4
48.k even 4 1 9216.2.a.w 4
48.k even 4 1 9216.2.a.bp 4
96.o even 8 2 4608.2.k.bd 8
96.o even 8 2 4608.2.k.bi 8
96.p odd 8 2 4608.2.k.bd 8
96.p odd 8 2 4608.2.k.bi 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
512.2.e.i 8 32.g even 8 2
512.2.e.i 8 32.h odd 8 2
512.2.e.j yes 8 32.g even 8 2
512.2.e.j yes 8 32.h odd 8 2
1024.2.a.h 4 16.e even 4 1
1024.2.a.h 4 16.f odd 4 1
1024.2.a.i 4 16.e even 4 1
1024.2.a.i 4 16.f odd 4 1
1024.2.b.g 8 1.a even 1 1 trivial
1024.2.b.g 8 4.b odd 2 1 inner
1024.2.b.g 8 8.b even 2 1 inner
1024.2.b.g 8 8.d odd 2 1 inner
4608.2.k.bd 8 96.o even 8 2
4608.2.k.bd 8 96.p odd 8 2
4608.2.k.bi 8 96.o even 8 2
4608.2.k.bi 8 96.p odd 8 2
9216.2.a.w 4 48.i odd 4 1
9216.2.a.w 4 48.k even 4 1
9216.2.a.bp 4 48.i odd 4 1
9216.2.a.bp 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1024, [\chi])\):

\( T_{3}^{4} + 8T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{5}^{4} + 12T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 16T_{7}^{2} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 8 T^{2} + 8)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 12 T^{2} + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 16 T^{2} + 32)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 40 T^{2} + 392)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 12 T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 40 T^{2} + 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 80 T^{2} + 1568)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 76 T^{2} + 1156)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 108 T^{2} + 2116)^{2} \) Copy content Toggle raw display
$41$ \( (T - 4)^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 8 T^{2} + 8)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 76 T^{2} + 1156)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 8 T^{2} + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 172 T^{2} + 196)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 104 T^{2} + 392)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 208 T^{2} + 9248)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 68)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 256 T^{2} + 8192)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 200 T^{2} + 2312)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 4)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T + 56)^{4} \) Copy content Toggle raw display
show more
show less