L(s) = 1 | + (1.80 + 0.258i)2-s + (2.21 + 0.650i)4-s + (−0.654 − 0.755i)5-s + (2.16 + 0.989i)8-s + (−0.983 − 1.53i)10-s + (1.70 + 1.09i)16-s + (−1.84 + 0.540i)17-s + (0.304 − 1.03i)19-s + (−0.959 − 2.10i)20-s + (0.142 + 0.989i)23-s + (−0.142 + 0.989i)25-s + (−0.698 + 1.53i)31-s + (0.983 + 0.852i)32-s + (−3.45 + 0.496i)34-s + (0.817 − 1.78i)38-s + ⋯ |
L(s) = 1 | + (1.80 + 0.258i)2-s + (2.21 + 0.650i)4-s + (−0.654 − 0.755i)5-s + (2.16 + 0.989i)8-s + (−0.983 − 1.53i)10-s + (1.70 + 1.09i)16-s + (−1.84 + 0.540i)17-s + (0.304 − 1.03i)19-s + (−0.959 − 2.10i)20-s + (0.142 + 0.989i)23-s + (−0.142 + 0.989i)25-s + (−0.698 + 1.53i)31-s + (0.983 + 0.852i)32-s + (−3.45 + 0.496i)34-s + (0.817 − 1.78i)38-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)(0.991−0.128i)Λ(1−s)
Λ(s)=(=(1035s/2ΓC(s)L(s)(0.991−0.128i)Λ(1−s)
Degree: |
2 |
Conductor: |
1035
= 32⋅5⋅23
|
Sign: |
0.991−0.128i
|
Analytic conductor: |
0.516532 |
Root analytic conductor: |
0.718701 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1035(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1035, ( :0), 0.991−0.128i)
|
Particular Values
L(21) |
≈ |
2.491310068 |
L(21) |
≈ |
2.491310068 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.654+0.755i)T |
| 23 | 1+(−0.142−0.989i)T |
good | 2 | 1+(−1.80−0.258i)T+(0.959+0.281i)T2 |
| 7 | 1+(0.415+0.909i)T2 |
| 11 | 1+(0.959−0.281i)T2 |
| 13 | 1+(−0.415+0.909i)T2 |
| 17 | 1+(1.84−0.540i)T+(0.841−0.540i)T2 |
| 19 | 1+(−0.304+1.03i)T+(−0.841−0.540i)T2 |
| 29 | 1+(0.841−0.540i)T2 |
| 31 | 1+(0.698−1.53i)T+(−0.654−0.755i)T2 |
| 37 | 1+(−0.142−0.989i)T2 |
| 41 | 1+(−0.142+0.989i)T2 |
| 43 | 1+(−0.654+0.755i)T2 |
| 47 | 1+1.97iT−T2 |
| 53 | 1+(0.239+0.153i)T+(0.415+0.909i)T2 |
| 59 | 1+(0.415−0.909i)T2 |
| 61 | 1+(−1.80−0.822i)T+(0.654+0.755i)T2 |
| 67 | 1+(−0.959−0.281i)T2 |
| 71 | 1+(−0.959−0.281i)T2 |
| 73 | 1+(−0.841−0.540i)T2 |
| 79 | 1+(0.817+1.27i)T+(−0.415+0.909i)T2 |
| 83 | 1+(0.544−0.627i)T+(−0.142−0.989i)T2 |
| 89 | 1+(0.654−0.755i)T2 |
| 97 | 1+(−0.142+0.989i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55224534005618095408529924757, −9.095259419937350329248844691130, −8.381232453526720123577737882518, −7.16282845570123941714011314724, −6.76984685727074212721051762151, −5.50880072714793806390971910791, −4.91388920425011754209917282449, −4.10531202873362421567130734364, −3.30544461803083701405812679942, −1.97705588049490233501847823368,
2.18157508823499889326832636675, 2.99996059074540101041788821585, 4.06796445628218171972533343776, 4.55927289572106884568221646098, 5.79173827247193279844491984599, 6.51943916388485339046318162826, 7.21117313246775457280480793604, 8.166365537236139904474465600573, 9.519929491081151138963140881684, 10.65174671496911118122501229763