L(s) = 1 | + (1.80 + 0.258i)2-s + (2.21 + 0.650i)4-s + (−0.654 − 0.755i)5-s + (2.16 + 0.989i)8-s + (−0.983 − 1.53i)10-s + (1.70 + 1.09i)16-s + (−1.84 + 0.540i)17-s + (0.304 − 1.03i)19-s + (−0.959 − 2.10i)20-s + (0.142 + 0.989i)23-s + (−0.142 + 0.989i)25-s + (−0.698 + 1.53i)31-s + (0.983 + 0.852i)32-s + (−3.45 + 0.496i)34-s + (0.817 − 1.78i)38-s + ⋯ |
L(s) = 1 | + (1.80 + 0.258i)2-s + (2.21 + 0.650i)4-s + (−0.654 − 0.755i)5-s + (2.16 + 0.989i)8-s + (−0.983 − 1.53i)10-s + (1.70 + 1.09i)16-s + (−1.84 + 0.540i)17-s + (0.304 − 1.03i)19-s + (−0.959 − 2.10i)20-s + (0.142 + 0.989i)23-s + (−0.142 + 0.989i)25-s + (−0.698 + 1.53i)31-s + (0.983 + 0.852i)32-s + (−3.45 + 0.496i)34-s + (0.817 − 1.78i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.128i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.128i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.491310068\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.491310068\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.654 + 0.755i)T \) |
| 23 | \( 1 + (-0.142 - 0.989i)T \) |
good | 2 | \( 1 + (-1.80 - 0.258i)T + (0.959 + 0.281i)T^{2} \) |
| 7 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 11 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 13 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 17 | \( 1 + (1.84 - 0.540i)T + (0.841 - 0.540i)T^{2} \) |
| 19 | \( 1 + (-0.304 + 1.03i)T + (-0.841 - 0.540i)T^{2} \) |
| 29 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 31 | \( 1 + (0.698 - 1.53i)T + (-0.654 - 0.755i)T^{2} \) |
| 37 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 41 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 47 | \( 1 + 1.97iT - T^{2} \) |
| 53 | \( 1 + (0.239 + 0.153i)T + (0.415 + 0.909i)T^{2} \) |
| 59 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 61 | \( 1 + (-1.80 - 0.822i)T + (0.654 + 0.755i)T^{2} \) |
| 67 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 71 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 79 | \( 1 + (0.817 + 1.27i)T + (-0.415 + 0.909i)T^{2} \) |
| 83 | \( 1 + (0.544 - 0.627i)T + (-0.142 - 0.989i)T^{2} \) |
| 89 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55224534005618095408529924757, −9.095259419937350329248844691130, −8.381232453526720123577737882518, −7.16282845570123941714011314724, −6.76984685727074212721051762151, −5.50880072714793806390971910791, −4.91388920425011754209917282449, −4.10531202873362421567130734364, −3.30544461803083701405812679942, −1.97705588049490233501847823368,
2.18157508823499889326832636675, 2.99996059074540101041788821585, 4.06796445628218171972533343776, 4.55927289572106884568221646098, 5.79173827247193279844491984599, 6.51943916388485339046318162826, 7.21117313246775457280480793604, 8.166365537236139904474465600573, 9.519929491081151138963140881684, 10.65174671496911118122501229763