Properties

Label 1035.1.bd.a
Level 10351035
Weight 11
Character orbit 1035.bd
Analytic conductor 0.5170.517
Analytic rank 00
Dimension 1010
Projective image D22D_{22}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,1,Mod(19,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1035.bd (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5165322880750.516532288075
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D22D_{22}
Projective field: Galois closure of Q[x]/(x22)\mathbb{Q}[x]/(x^{22} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ2210+ζ222)q2+(ζ229+ζ224+ζ22)q4ζ223q5+(ζ228+ζ226++1)q8+(ζ225ζ222)q10++(ζ226ζ223)q98+O(q100) q + ( - \zeta_{22}^{10} + \zeta_{22}^{2}) q^{2} + ( - \zeta_{22}^{9} + \zeta_{22}^{4} + \zeta_{22}) q^{4} - \zeta_{22}^{3} q^{5} + ( - \zeta_{22}^{8} + \zeta_{22}^{6} + \cdots + 1) q^{8} + ( - \zeta_{22}^{5} - \zeta_{22}^{2}) q^{10} + \cdots + ( - \zeta_{22}^{6} - \zeta_{22}^{3}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq4q5+11q8q169q17q20+q23q25+2q3111q3411q40+q492q5311q62+10q64+2q68+11q76+10q802q83++q92+O(q100) 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1035Z)×\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times.

nn 461461 622622 856856
χ(n)\chi(n) 11 1-1 ζ226-\zeta_{22}^{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
0.654861 0.755750i
0.654861 + 0.755750i
0.959493 + 0.281733i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
0.142315 0.989821i
0.142315 + 0.989821i
−0.841254 0.540641i
−0.415415 0.909632i
0.959493 0.281733i
0.512546 0.234072i 0 −0.446947 + 0.515804i 0.841254 + 0.540641i 0 0 −0.267092 + 0.909632i 0 0.557730 + 0.0801894i
109.1 0.512546 + 0.234072i 0 −0.446947 0.515804i 0.841254 0.540641i 0 0 −0.267092 0.909632i 0 0.557730 0.0801894i
199.1 1.80075 + 0.258908i 0 2.21616 + 0.650724i −0.654861 0.755750i 0 0 2.16741 + 0.989821i 0 −0.983568 1.53046i
244.1 −0.425839 1.45027i 0 −1.08070 + 0.694523i −0.142315 0.989821i 0 0 0.325137 + 0.281733i 0 −1.37491 + 0.627899i
379.1 −1.07028 1.66538i 0 −1.21259 + 2.65520i −0.959493 + 0.281733i 0 0 3.76024 0.540641i 0 1.49611 + 1.29639i
424.1 −0.817178 + 0.708089i 0 0.0240754 0.167448i 0.415415 0.909632i 0 0 −0.485691 0.755750i 0 0.304632 + 1.03748i
559.1 −0.817178 0.708089i 0 0.0240754 + 0.167448i 0.415415 + 0.909632i 0 0 −0.485691 + 0.755750i 0 0.304632 1.03748i
649.1 −0.425839 + 1.45027i 0 −1.08070 0.694523i −0.142315 + 0.989821i 0 0 0.325137 0.281733i 0 −1.37491 0.627899i
964.1 −1.07028 + 1.66538i 0 −1.21259 2.65520i −0.959493 0.281733i 0 0 3.76024 + 0.540641i 0 1.49611 1.29639i
1009.1 1.80075 0.258908i 0 2.21616 0.650724i −0.654861 + 0.755750i 0 0 2.16741 0.989821i 0 −0.983568 + 1.53046i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
69.g even 22 1 inner
115.i odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1035.1.bd.a 10
3.b odd 2 1 1035.1.bd.b yes 10
5.b even 2 1 1035.1.bd.b yes 10
15.d odd 2 1 CM 1035.1.bd.a 10
23.d odd 22 1 1035.1.bd.b yes 10
69.g even 22 1 inner 1035.1.bd.a 10
115.i odd 22 1 inner 1035.1.bd.a 10
345.n even 22 1 1035.1.bd.b yes 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1035.1.bd.a 10 1.a even 1 1 trivial
1035.1.bd.a 10 15.d odd 2 1 CM
1035.1.bd.a 10 69.g even 22 1 inner
1035.1.bd.a 10 115.i odd 22 1 inner
1035.1.bd.b yes 10 3.b odd 2 1
1035.1.bd.b yes 10 5.b even 2 1
1035.1.bd.b yes 10 23.d odd 22 1
1035.1.bd.b yes 10 345.n even 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T21011T27+33T24+11T2322T2+11 T_{2}^{10} - 11T_{2}^{7} + 33T_{2}^{4} + 11T_{2}^{3} - 22T_{2} + 11 acting on S1new(1035,[χ])S_{1}^{\mathrm{new}}(1035, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T1011T7++11 T^{10} - 11 T^{7} + \cdots + 11 Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T10 T^{10} Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T10+9T9++1 T^{10} + 9 T^{9} + \cdots + 1 Copy content Toggle raw display
1919 T10+11T6++11 T^{10} + 11 T^{6} + \cdots + 11 Copy content Toggle raw display
2323 T10T9++1 T^{10} - T^{9} + \cdots + 1 Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 T10 T^{10} Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10 T^{10} Copy content Toggle raw display
4747 T10+11T8++11 T^{10} + 11 T^{8} + \cdots + 11 Copy content Toggle raw display
5353 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
5959 T10 T^{10} Copy content Toggle raw display
6161 T10+11T4++11 T^{10} + 11 T^{4} + \cdots + 11 Copy content Toggle raw display
6767 T10 T^{10} Copy content Toggle raw display
7171 T10 T^{10} Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T10+11T4++11 T^{10} + 11 T^{4} + \cdots + 11 Copy content Toggle raw display
8383 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
8989 T10 T^{10} Copy content Toggle raw display
9797 T10 T^{10} Copy content Toggle raw display
show more
show less