Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1035,1,Mod(19,1035)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 11, 15]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1035.19");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1035.bd (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
0.512546 | − | 0.234072i | 0 | −0.446947 | + | 0.515804i | 0.841254 | + | 0.540641i | 0 | 0 | −0.267092 | + | 0.909632i | 0 | 0.557730 | + | 0.0801894i | ||||||||||||||||||||||||||||||||||||||
109.1 | 0.512546 | + | 0.234072i | 0 | −0.446947 | − | 0.515804i | 0.841254 | − | 0.540641i | 0 | 0 | −0.267092 | − | 0.909632i | 0 | 0.557730 | − | 0.0801894i | |||||||||||||||||||||||||||||||||||||||
199.1 | 1.80075 | + | 0.258908i | 0 | 2.21616 | + | 0.650724i | −0.654861 | − | 0.755750i | 0 | 0 | 2.16741 | + | 0.989821i | 0 | −0.983568 | − | 1.53046i | |||||||||||||||||||||||||||||||||||||||
244.1 | −0.425839 | − | 1.45027i | 0 | −1.08070 | + | 0.694523i | −0.142315 | − | 0.989821i | 0 | 0 | 0.325137 | + | 0.281733i | 0 | −1.37491 | + | 0.627899i | |||||||||||||||||||||||||||||||||||||||
379.1 | −1.07028 | − | 1.66538i | 0 | −1.21259 | + | 2.65520i | −0.959493 | + | 0.281733i | 0 | 0 | 3.76024 | − | 0.540641i | 0 | 1.49611 | + | 1.29639i | |||||||||||||||||||||||||||||||||||||||
424.1 | −0.817178 | + | 0.708089i | 0 | 0.0240754 | − | 0.167448i | 0.415415 | − | 0.909632i | 0 | 0 | −0.485691 | − | 0.755750i | 0 | 0.304632 | + | 1.03748i | |||||||||||||||||||||||||||||||||||||||
559.1 | −0.817178 | − | 0.708089i | 0 | 0.0240754 | + | 0.167448i | 0.415415 | + | 0.909632i | 0 | 0 | −0.485691 | + | 0.755750i | 0 | 0.304632 | − | 1.03748i | |||||||||||||||||||||||||||||||||||||||
649.1 | −0.425839 | + | 1.45027i | 0 | −1.08070 | − | 0.694523i | −0.142315 | + | 0.989821i | 0 | 0 | 0.325137 | − | 0.281733i | 0 | −1.37491 | − | 0.627899i | |||||||||||||||||||||||||||||||||||||||
964.1 | −1.07028 | + | 1.66538i | 0 | −1.21259 | − | 2.65520i | −0.959493 | − | 0.281733i | 0 | 0 | 3.76024 | + | 0.540641i | 0 | 1.49611 | − | 1.29639i | |||||||||||||||||||||||||||||||||||||||
1009.1 | 1.80075 | − | 0.258908i | 0 | 2.21616 | − | 0.650724i | −0.654861 | + | 0.755750i | 0 | 0 | 2.16741 | − | 0.989821i | 0 | −0.983568 | + | 1.53046i | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | CM by |
69.g | even | 22 | 1 | inner |
115.i | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1035.1.bd.a | ✓ | 10 |
3.b | odd | 2 | 1 | 1035.1.bd.b | yes | 10 | |
5.b | even | 2 | 1 | 1035.1.bd.b | yes | 10 | |
15.d | odd | 2 | 1 | CM | 1035.1.bd.a | ✓ | 10 |
23.d | odd | 22 | 1 | 1035.1.bd.b | yes | 10 | |
69.g | even | 22 | 1 | inner | 1035.1.bd.a | ✓ | 10 |
115.i | odd | 22 | 1 | inner | 1035.1.bd.a | ✓ | 10 |
345.n | even | 22 | 1 | 1035.1.bd.b | yes | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1035.1.bd.a | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
1035.1.bd.a | ✓ | 10 | 15.d | odd | 2 | 1 | CM |
1035.1.bd.a | ✓ | 10 | 69.g | even | 22 | 1 | inner |
1035.1.bd.a | ✓ | 10 | 115.i | odd | 22 | 1 | inner |
1035.1.bd.b | yes | 10 | 3.b | odd | 2 | 1 | |
1035.1.bd.b | yes | 10 | 5.b | even | 2 | 1 | |
1035.1.bd.b | yes | 10 | 23.d | odd | 22 | 1 | |
1035.1.bd.b | yes | 10 | 345.n | even | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .