Properties

Label 1035.1.bd.a
Level $1035$
Weight $1$
Character orbit 1035.bd
Analytic conductor $0.517$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,1,Mod(19,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1035.bd (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.516532288075\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{22}^{10} + \zeta_{22}^{2}) q^{2} + ( - \zeta_{22}^{9} + \zeta_{22}^{4} + \zeta_{22}) q^{4} - \zeta_{22}^{3} q^{5} + ( - \zeta_{22}^{8} + \zeta_{22}^{6} + \cdots + 1) q^{8} + ( - \zeta_{22}^{5} - \zeta_{22}^{2}) q^{10} + \cdots + ( - \zeta_{22}^{6} - \zeta_{22}^{3}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(622\) \(856\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{22}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.654861 0.755750i
0.654861 + 0.755750i
0.959493 + 0.281733i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
0.142315 0.989821i
0.142315 + 0.989821i
−0.841254 0.540641i
−0.415415 0.909632i
0.959493 0.281733i
0.512546 0.234072i 0 −0.446947 + 0.515804i 0.841254 + 0.540641i 0 0 −0.267092 + 0.909632i 0 0.557730 + 0.0801894i
109.1 0.512546 + 0.234072i 0 −0.446947 0.515804i 0.841254 0.540641i 0 0 −0.267092 0.909632i 0 0.557730 0.0801894i
199.1 1.80075 + 0.258908i 0 2.21616 + 0.650724i −0.654861 0.755750i 0 0 2.16741 + 0.989821i 0 −0.983568 1.53046i
244.1 −0.425839 1.45027i 0 −1.08070 + 0.694523i −0.142315 0.989821i 0 0 0.325137 + 0.281733i 0 −1.37491 + 0.627899i
379.1 −1.07028 1.66538i 0 −1.21259 + 2.65520i −0.959493 + 0.281733i 0 0 3.76024 0.540641i 0 1.49611 + 1.29639i
424.1 −0.817178 + 0.708089i 0 0.0240754 0.167448i 0.415415 0.909632i 0 0 −0.485691 0.755750i 0 0.304632 + 1.03748i
559.1 −0.817178 0.708089i 0 0.0240754 + 0.167448i 0.415415 + 0.909632i 0 0 −0.485691 + 0.755750i 0 0.304632 1.03748i
649.1 −0.425839 + 1.45027i 0 −1.08070 0.694523i −0.142315 + 0.989821i 0 0 0.325137 0.281733i 0 −1.37491 0.627899i
964.1 −1.07028 + 1.66538i 0 −1.21259 2.65520i −0.959493 0.281733i 0 0 3.76024 + 0.540641i 0 1.49611 1.29639i
1009.1 1.80075 0.258908i 0 2.21616 0.650724i −0.654861 + 0.755750i 0 0 2.16741 0.989821i 0 −0.983568 + 1.53046i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
69.g even 22 1 inner
115.i odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1035.1.bd.a 10
3.b odd 2 1 1035.1.bd.b yes 10
5.b even 2 1 1035.1.bd.b yes 10
15.d odd 2 1 CM 1035.1.bd.a 10
23.d odd 22 1 1035.1.bd.b yes 10
69.g even 22 1 inner 1035.1.bd.a 10
115.i odd 22 1 inner 1035.1.bd.a 10
345.n even 22 1 1035.1.bd.b yes 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1035.1.bd.a 10 1.a even 1 1 trivial
1035.1.bd.a 10 15.d odd 2 1 CM
1035.1.bd.a 10 69.g even 22 1 inner
1035.1.bd.a 10 115.i odd 22 1 inner
1035.1.bd.b yes 10 3.b odd 2 1
1035.1.bd.b yes 10 5.b even 2 1
1035.1.bd.b yes 10 23.d odd 22 1
1035.1.bd.b yes 10 345.n even 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 11T_{2}^{7} + 33T_{2}^{4} + 11T_{2}^{3} - 22T_{2} + 11 \) acting on \(S_{1}^{\mathrm{new}}(1035, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} + 9 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + 11 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$23$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{10} \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} \) Copy content Toggle raw display
$47$ \( T^{10} + 11 T^{8} + \cdots + 11 \) Copy content Toggle raw display
$53$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{10} \) Copy content Toggle raw display
$61$ \( T^{10} + 11 T^{4} + \cdots + 11 \) Copy content Toggle raw display
$67$ \( T^{10} \) Copy content Toggle raw display
$71$ \( T^{10} \) Copy content Toggle raw display
$73$ \( T^{10} \) Copy content Toggle raw display
$79$ \( T^{10} + 11 T^{4} + \cdots + 11 \) Copy content Toggle raw display
$83$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{10} \) Copy content Toggle raw display
$97$ \( T^{10} \) Copy content Toggle raw display
show more
show less