L(s) = 1 | + (−1.07 − 1.66i)2-s + (−1.21 + 2.65i)4-s + (−0.959 + 0.281i)5-s + (3.76 − 0.540i)8-s + (1.49 + 1.29i)10-s + (−3.01 − 3.47i)16-s + (−0.345 − 0.755i)17-s + (−1.37 − 0.627i)19-s + (0.415 − 2.88i)20-s + (−0.841 − 0.540i)23-s + (0.841 − 0.540i)25-s + (−0.186 − 1.29i)31-s + (−1.49 + 5.09i)32-s + (−0.889 + 1.38i)34-s + (0.425 + 2.96i)38-s + ⋯ |
L(s) = 1 | + (−1.07 − 1.66i)2-s + (−1.21 + 2.65i)4-s + (−0.959 + 0.281i)5-s + (3.76 − 0.540i)8-s + (1.49 + 1.29i)10-s + (−3.01 − 3.47i)16-s + (−0.345 − 0.755i)17-s + (−1.37 − 0.627i)19-s + (0.415 − 2.88i)20-s + (−0.841 − 0.540i)23-s + (0.841 − 0.540i)25-s + (−0.186 − 1.29i)31-s + (−1.49 + 5.09i)32-s + (−0.889 + 1.38i)34-s + (0.425 + 2.96i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.874 - 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.874 - 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2184584080\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2184584080\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.959 - 0.281i)T \) |
| 23 | \( 1 + (0.841 + 0.540i)T \) |
good | 2 | \( 1 + (1.07 + 1.66i)T + (-0.415 + 0.909i)T^{2} \) |
| 7 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 11 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 13 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 17 | \( 1 + (0.345 + 0.755i)T + (-0.654 + 0.755i)T^{2} \) |
| 19 | \( 1 + (1.37 + 0.627i)T + (0.654 + 0.755i)T^{2} \) |
| 29 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 31 | \( 1 + (0.186 + 1.29i)T + (-0.959 + 0.281i)T^{2} \) |
| 37 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 41 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 43 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 47 | \( 1 - 1.08iT - T^{2} \) |
| 53 | \( 1 + (1.10 + 1.27i)T + (-0.142 + 0.989i)T^{2} \) |
| 59 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 61 | \( 1 + (1.07 - 0.153i)T + (0.959 - 0.281i)T^{2} \) |
| 67 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 71 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 73 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 79 | \( 1 + (0.425 + 0.368i)T + (0.142 + 0.989i)T^{2} \) |
| 83 | \( 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 89 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + (0.841 - 0.540i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.774050379559264785778925874880, −8.959927304988823753249698351443, −8.253161014959665000797905502987, −7.61113835658180741986047820332, −6.65688751056734141560086723345, −4.63241848854074474056744820023, −4.03895152004890064045443059973, −2.98076015810112659231509884997, −2.08939265985803490993156570244, −0.29610066118754624069314019043,
1.57706190386261152032571997430, 3.97386807488616327472987822238, 4.77357240098153922524798364969, 5.84583493832856951881473504578, 6.56521378366491621612206425272, 7.44202184236778392749718721948, 8.140057810051660764589355190455, 8.639073411155034599709506349032, 9.405385474724249998102063936276, 10.47752249866333772565391604694