L(s) = 1 | + (−1.07 − 1.66i)2-s + (−1.21 + 2.65i)4-s + (−0.959 + 0.281i)5-s + (3.76 − 0.540i)8-s + (1.49 + 1.29i)10-s + (−3.01 − 3.47i)16-s + (−0.345 − 0.755i)17-s + (−1.37 − 0.627i)19-s + (0.415 − 2.88i)20-s + (−0.841 − 0.540i)23-s + (0.841 − 0.540i)25-s + (−0.186 − 1.29i)31-s + (−1.49 + 5.09i)32-s + (−0.889 + 1.38i)34-s + (0.425 + 2.96i)38-s + ⋯ |
L(s) = 1 | + (−1.07 − 1.66i)2-s + (−1.21 + 2.65i)4-s + (−0.959 + 0.281i)5-s + (3.76 − 0.540i)8-s + (1.49 + 1.29i)10-s + (−3.01 − 3.47i)16-s + (−0.345 − 0.755i)17-s + (−1.37 − 0.627i)19-s + (0.415 − 2.88i)20-s + (−0.841 − 0.540i)23-s + (0.841 − 0.540i)25-s + (−0.186 − 1.29i)31-s + (−1.49 + 5.09i)32-s + (−0.889 + 1.38i)34-s + (0.425 + 2.96i)38-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)(−0.874−0.484i)Λ(1−s)
Λ(s)=(=(1035s/2ΓC(s)L(s)(−0.874−0.484i)Λ(1−s)
Degree: |
2 |
Conductor: |
1035
= 32⋅5⋅23
|
Sign: |
−0.874−0.484i
|
Analytic conductor: |
0.516532 |
Root analytic conductor: |
0.718701 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1035(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1035, ( :0), −0.874−0.484i)
|
Particular Values
L(21) |
≈ |
0.2184584080 |
L(21) |
≈ |
0.2184584080 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.959−0.281i)T |
| 23 | 1+(0.841+0.540i)T |
good | 2 | 1+(1.07+1.66i)T+(−0.415+0.909i)T2 |
| 7 | 1+(−0.142+0.989i)T2 |
| 11 | 1+(−0.415−0.909i)T2 |
| 13 | 1+(0.142+0.989i)T2 |
| 17 | 1+(0.345+0.755i)T+(−0.654+0.755i)T2 |
| 19 | 1+(1.37+0.627i)T+(0.654+0.755i)T2 |
| 29 | 1+(−0.654+0.755i)T2 |
| 31 | 1+(0.186+1.29i)T+(−0.959+0.281i)T2 |
| 37 | 1+(0.841+0.540i)T2 |
| 41 | 1+(0.841−0.540i)T2 |
| 43 | 1+(−0.959−0.281i)T2 |
| 47 | 1−1.08iT−T2 |
| 53 | 1+(1.10+1.27i)T+(−0.142+0.989i)T2 |
| 59 | 1+(−0.142−0.989i)T2 |
| 61 | 1+(1.07−0.153i)T+(0.959−0.281i)T2 |
| 67 | 1+(0.415−0.909i)T2 |
| 71 | 1+(0.415−0.909i)T2 |
| 73 | 1+(0.654+0.755i)T2 |
| 79 | 1+(0.425+0.368i)T+(0.142+0.989i)T2 |
| 83 | 1+(−0.273−0.0801i)T+(0.841+0.540i)T2 |
| 89 | 1+(0.959+0.281i)T2 |
| 97 | 1+(0.841−0.540i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.774050379559264785778925874880, −8.959927304988823753249698351443, −8.253161014959665000797905502987, −7.61113835658180741986047820332, −6.65688751056734141560086723345, −4.63241848854074474056744820023, −4.03895152004890064045443059973, −2.98076015810112659231509884997, −2.08939265985803490993156570244, −0.29610066118754624069314019043,
1.57706190386261152032571997430, 3.97386807488616327472987822238, 4.77357240098153922524798364969, 5.84583493832856951881473504578, 6.56521378366491621612206425272, 7.44202184236778392749718721948, 8.140057810051660764589355190455, 8.639073411155034599709506349032, 9.405385474724249998102063936276, 10.47752249866333772565391604694