L(s) = 1 | − 2.69·2-s + 5.25·4-s − 5-s − 2.74·7-s − 8.76·8-s + 2.69·10-s + 3.38·11-s − 2.46·13-s + 7.38·14-s + 13.1·16-s + 2.64·17-s + 3.38·19-s − 5.25·20-s − 9.12·22-s + 23-s + 25-s + 6.63·26-s − 14.4·28-s − 9.20·29-s − 5.10·31-s − 17.7·32-s − 7.12·34-s + 2.74·35-s + 5.50·37-s − 9.12·38-s + 8.76·40-s + 1.20·41-s + ⋯ |
L(s) = 1 | − 1.90·2-s + 2.62·4-s − 0.447·5-s − 1.03·7-s − 3.09·8-s + 0.851·10-s + 1.02·11-s − 0.683·13-s + 1.97·14-s + 3.27·16-s + 0.641·17-s + 0.777·19-s − 1.17·20-s − 1.94·22-s + 0.208·23-s + 0.200·25-s + 1.30·26-s − 2.72·28-s − 1.70·29-s − 0.917·31-s − 3.14·32-s − 1.22·34-s + 0.463·35-s + 0.904·37-s − 1.47·38-s + 1.38·40-s + 0.188·41-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1035s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 2 | 1+2.69T+2T2 |
| 7 | 1+2.74T+7T2 |
| 11 | 1−3.38T+11T2 |
| 13 | 1+2.46T+13T2 |
| 17 | 1−2.64T+17T2 |
| 19 | 1−3.38T+19T2 |
| 29 | 1+9.20T+29T2 |
| 31 | 1+5.10T+31T2 |
| 37 | 1−5.50T+37T2 |
| 41 | 1−1.20T+41T2 |
| 43 | 1−3.02T+43T2 |
| 47 | 1+8.21T+47T2 |
| 53 | 1−10.5T+53T2 |
| 59 | 1+8.28T+59T2 |
| 61 | 1−0.263T+61T2 |
| 67 | 1+7.66T+67T2 |
| 71 | 1−0.0150T+71T2 |
| 73 | 1+5.53T+73T2 |
| 79 | 1+8.67T+79T2 |
| 83 | 1−3.52T+83T2 |
| 89 | 1−4.66T+89T2 |
| 97 | 1+4.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.407652145642897221537261120838, −9.015998627137688328846387142727, −7.81506847329111350928777685572, −7.31340061162445015985951847296, −6.55764277109648950551944504831, −5.62958374639956538768473228668, −3.74879232965867172154814975152, −2.79708757196334696687636319371, −1.38864983402180821709110777698, 0,
1.38864983402180821709110777698, 2.79708757196334696687636319371, 3.74879232965867172154814975152, 5.62958374639956538768473228668, 6.55764277109648950551944504831, 7.31340061162445015985951847296, 7.81506847329111350928777685572, 9.015998627137688328846387142727, 9.407652145642897221537261120838