Properties

Label 1035.2.a.o.1.1
Level $1035$
Weight $2$
Character 1035.1
Self dual yes
Analytic conductor $8.265$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,2,Mod(1,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1035.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.26451660920\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.69353\) of defining polynomial
Character \(\chi\) \(=\) 1035.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69353 q^{2} +5.25508 q^{4} -1.00000 q^{5} -2.74252 q^{7} -8.76763 q^{8} +2.69353 q^{10} +3.38705 q^{11} -2.46356 q^{13} +7.38705 q^{14} +13.1057 q^{16} +2.64453 q^{17} +3.38705 q^{19} -5.25508 q^{20} -9.12311 q^{22} +1.00000 q^{23} +1.00000 q^{25} +6.63566 q^{26} -14.4122 q^{28} -9.20608 q^{29} -5.10809 q^{31} -17.7652 q^{32} -7.12311 q^{34} +2.74252 q^{35} +5.50369 q^{37} -9.12311 q^{38} +8.76763 q^{40} +1.20608 q^{41} +3.02511 q^{43} +17.7992 q^{44} -2.69353 q^{46} -8.21255 q^{47} +0.521423 q^{49} -2.69353 q^{50} -12.9462 q^{52} +10.5417 q^{53} -3.38705 q^{55} +24.0454 q^{56} +24.7968 q^{58} -8.28259 q^{59} +0.263945 q^{61} +13.7588 q^{62} +21.6397 q^{64} +2.46356 q^{65} -7.66964 q^{67} +13.8972 q^{68} -7.38705 q^{70} +0.0150161 q^{71} -5.53644 q^{73} -14.8243 q^{74} +17.7992 q^{76} -9.28906 q^{77} -8.67611 q^{79} -13.1057 q^{80} -3.24861 q^{82} +3.52142 q^{83} -2.64453 q^{85} -8.14822 q^{86} -29.6964 q^{88} +4.66318 q^{89} +6.75637 q^{91} +5.25508 q^{92} +22.1207 q^{94} -3.38705 q^{95} -4.09799 q^{97} -1.40447 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{4} - 4 q^{5} - 3 q^{7} - 9 q^{8} + 2 q^{10} - 4 q^{11} + 12 q^{14} + 8 q^{16} + q^{17} - 4 q^{19} - 4 q^{20} - 20 q^{22} + 4 q^{23} + 4 q^{25} + q^{26} - 22 q^{28} - 19 q^{29} - q^{31}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69353 −1.90461 −0.952305 0.305148i \(-0.901294\pi\)
−0.952305 + 0.305148i \(0.901294\pi\)
\(3\) 0 0
\(4\) 5.25508 2.62754
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.74252 −1.03658 −0.518288 0.855206i \(-0.673430\pi\)
−0.518288 + 0.855206i \(0.673430\pi\)
\(8\) −8.76763 −3.09983
\(9\) 0 0
\(10\) 2.69353 0.851767
\(11\) 3.38705 1.02123 0.510617 0.859808i \(-0.329417\pi\)
0.510617 + 0.859808i \(0.329417\pi\)
\(12\) 0 0
\(13\) −2.46356 −0.683269 −0.341634 0.939833i \(-0.610980\pi\)
−0.341634 + 0.939833i \(0.610980\pi\)
\(14\) 7.38705 1.97427
\(15\) 0 0
\(16\) 13.1057 3.27642
\(17\) 2.64453 0.641393 0.320696 0.947182i \(-0.396083\pi\)
0.320696 + 0.947182i \(0.396083\pi\)
\(18\) 0 0
\(19\) 3.38705 0.777043 0.388521 0.921440i \(-0.372986\pi\)
0.388521 + 0.921440i \(0.372986\pi\)
\(20\) −5.25508 −1.17507
\(21\) 0 0
\(22\) −9.12311 −1.94505
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.63566 1.30136
\(27\) 0 0
\(28\) −14.4122 −2.72364
\(29\) −9.20608 −1.70953 −0.854763 0.519018i \(-0.826298\pi\)
−0.854763 + 0.519018i \(0.826298\pi\)
\(30\) 0 0
\(31\) −5.10809 −0.917440 −0.458720 0.888581i \(-0.651692\pi\)
−0.458720 + 0.888581i \(0.651692\pi\)
\(32\) −17.7652 −3.14048
\(33\) 0 0
\(34\) −7.12311 −1.22160
\(35\) 2.74252 0.463571
\(36\) 0 0
\(37\) 5.50369 0.904801 0.452401 0.891815i \(-0.350568\pi\)
0.452401 + 0.891815i \(0.350568\pi\)
\(38\) −9.12311 −1.47996
\(39\) 0 0
\(40\) 8.76763 1.38628
\(41\) 1.20608 0.188358 0.0941792 0.995555i \(-0.469977\pi\)
0.0941792 + 0.995555i \(0.469977\pi\)
\(42\) 0 0
\(43\) 3.02511 0.461325 0.230663 0.973034i \(-0.425911\pi\)
0.230663 + 0.973034i \(0.425911\pi\)
\(44\) 17.7992 2.68333
\(45\) 0 0
\(46\) −2.69353 −0.397139
\(47\) −8.21255 −1.19792 −0.598962 0.800778i \(-0.704420\pi\)
−0.598962 + 0.800778i \(0.704420\pi\)
\(48\) 0 0
\(49\) 0.521423 0.0744891
\(50\) −2.69353 −0.380922
\(51\) 0 0
\(52\) −12.9462 −1.79532
\(53\) 10.5417 1.44802 0.724009 0.689790i \(-0.242297\pi\)
0.724009 + 0.689790i \(0.242297\pi\)
\(54\) 0 0
\(55\) −3.38705 −0.456710
\(56\) 24.0454 3.21321
\(57\) 0 0
\(58\) 24.7968 3.25598
\(59\) −8.28259 −1.07830 −0.539151 0.842209i \(-0.681255\pi\)
−0.539151 + 0.842209i \(0.681255\pi\)
\(60\) 0 0
\(61\) 0.263945 0.0337947 0.0168973 0.999857i \(-0.494621\pi\)
0.0168973 + 0.999857i \(0.494621\pi\)
\(62\) 13.7588 1.74737
\(63\) 0 0
\(64\) 21.6397 2.70497
\(65\) 2.46356 0.305567
\(66\) 0 0
\(67\) −7.66964 −0.936996 −0.468498 0.883465i \(-0.655205\pi\)
−0.468498 + 0.883465i \(0.655205\pi\)
\(68\) 13.8972 1.68528
\(69\) 0 0
\(70\) −7.38705 −0.882921
\(71\) 0.0150161 0.00178208 0.000891041 1.00000i \(-0.499716\pi\)
0.000891041 1.00000i \(0.499716\pi\)
\(72\) 0 0
\(73\) −5.53644 −0.647991 −0.323996 0.946059i \(-0.605026\pi\)
−0.323996 + 0.946059i \(0.605026\pi\)
\(74\) −14.8243 −1.72329
\(75\) 0 0
\(76\) 17.7992 2.04171
\(77\) −9.28906 −1.05859
\(78\) 0 0
\(79\) −8.67611 −0.976138 −0.488069 0.872805i \(-0.662299\pi\)
−0.488069 + 0.872805i \(0.662299\pi\)
\(80\) −13.1057 −1.46526
\(81\) 0 0
\(82\) −3.24861 −0.358749
\(83\) 3.52142 0.386526 0.193263 0.981147i \(-0.438093\pi\)
0.193263 + 0.981147i \(0.438093\pi\)
\(84\) 0 0
\(85\) −2.64453 −0.286839
\(86\) −8.14822 −0.878645
\(87\) 0 0
\(88\) −29.6964 −3.16565
\(89\) 4.66318 0.494296 0.247148 0.968978i \(-0.420507\pi\)
0.247148 + 0.968978i \(0.420507\pi\)
\(90\) 0 0
\(91\) 6.75637 0.708260
\(92\) 5.25508 0.547880
\(93\) 0 0
\(94\) 22.1207 2.28158
\(95\) −3.38705 −0.347504
\(96\) 0 0
\(97\) −4.09799 −0.416088 −0.208044 0.978119i \(-0.566710\pi\)
−0.208044 + 0.978119i \(0.566710\pi\)
\(98\) −1.40447 −0.141873
\(99\) 0 0
\(100\) 5.25508 0.525508
\(101\) −12.2955 −1.22345 −0.611725 0.791070i \(-0.709524\pi\)
−0.611725 + 0.791070i \(0.709524\pi\)
\(102\) 0 0
\(103\) 6.05023 0.596147 0.298073 0.954543i \(-0.403656\pi\)
0.298073 + 0.954543i \(0.403656\pi\)
\(104\) 21.5996 2.11801
\(105\) 0 0
\(106\) −28.3944 −2.75791
\(107\) −13.1547 −1.27171 −0.635856 0.771808i \(-0.719353\pi\)
−0.635856 + 0.771808i \(0.719353\pi\)
\(108\) 0 0
\(109\) −17.1183 −1.63964 −0.819818 0.572624i \(-0.805925\pi\)
−0.819818 + 0.572624i \(0.805925\pi\)
\(110\) 9.12311 0.869854
\(111\) 0 0
\(112\) −35.9426 −3.39626
\(113\) −4.38058 −0.412091 −0.206045 0.978542i \(-0.566059\pi\)
−0.206045 + 0.978542i \(0.566059\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) −48.3787 −4.49185
\(117\) 0 0
\(118\) 22.3094 2.05374
\(119\) −7.25268 −0.664852
\(120\) 0 0
\(121\) 0.472110 0.0429191
\(122\) −0.710942 −0.0643657
\(123\) 0 0
\(124\) −26.8434 −2.41061
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −18.4588 −1.63795 −0.818975 0.573829i \(-0.805457\pi\)
−0.818975 + 0.573829i \(0.805457\pi\)
\(128\) −22.7567 −2.01143
\(129\) 0 0
\(130\) −6.63566 −0.581986
\(131\) 3.86834 0.337979 0.168989 0.985618i \(-0.445950\pi\)
0.168989 + 0.985618i \(0.445950\pi\)
\(132\) 0 0
\(133\) −9.28906 −0.805463
\(134\) 20.6584 1.78461
\(135\) 0 0
\(136\) −23.1863 −1.98821
\(137\) −20.6713 −1.76607 −0.883034 0.469308i \(-0.844503\pi\)
−0.883034 + 0.469308i \(0.844503\pi\)
\(138\) 0 0
\(139\) 12.5802 1.06704 0.533519 0.845788i \(-0.320869\pi\)
0.533519 + 0.845788i \(0.320869\pi\)
\(140\) 14.4122 1.21805
\(141\) 0 0
\(142\) −0.0404462 −0.00339417
\(143\) −8.34420 −0.697777
\(144\) 0 0
\(145\) 9.20608 0.764523
\(146\) 14.9125 1.23417
\(147\) 0 0
\(148\) 28.9223 2.37740
\(149\) −11.4850 −0.940891 −0.470446 0.882429i \(-0.655907\pi\)
−0.470446 + 0.882429i \(0.655907\pi\)
\(150\) 0 0
\(151\) −5.58667 −0.454636 −0.227318 0.973821i \(-0.572996\pi\)
−0.227318 + 0.973821i \(0.572996\pi\)
\(152\) −29.6964 −2.40870
\(153\) 0 0
\(154\) 25.0203 2.01619
\(155\) 5.10809 0.410292
\(156\) 0 0
\(157\) 5.86563 0.468128 0.234064 0.972221i \(-0.424797\pi\)
0.234064 + 0.972221i \(0.424797\pi\)
\(158\) 23.3693 1.85916
\(159\) 0 0
\(160\) 17.7652 1.40447
\(161\) −2.74252 −0.216141
\(162\) 0 0
\(163\) 0.0465955 0.00364964 0.00182482 0.999998i \(-0.499419\pi\)
0.00182482 + 0.999998i \(0.499419\pi\)
\(164\) 6.33805 0.494919
\(165\) 0 0
\(166\) −9.48504 −0.736182
\(167\) 2.24621 0.173817 0.0869085 0.996216i \(-0.472301\pi\)
0.0869085 + 0.996216i \(0.472301\pi\)
\(168\) 0 0
\(169\) −6.93087 −0.533144
\(170\) 7.12311 0.546317
\(171\) 0 0
\(172\) 15.8972 1.21215
\(173\) −8.01293 −0.609212 −0.304606 0.952478i \(-0.598525\pi\)
−0.304606 + 0.952478i \(0.598525\pi\)
\(174\) 0 0
\(175\) −2.74252 −0.207315
\(176\) 44.3896 3.34599
\(177\) 0 0
\(178\) −12.5604 −0.941440
\(179\) 11.9615 0.894047 0.447024 0.894522i \(-0.352484\pi\)
0.447024 + 0.894522i \(0.352484\pi\)
\(180\) 0 0
\(181\) −17.4802 −1.29930 −0.649648 0.760235i \(-0.725084\pi\)
−0.649648 + 0.760235i \(0.725084\pi\)
\(182\) −18.1984 −1.34896
\(183\) 0 0
\(184\) −8.76763 −0.646359
\(185\) −5.50369 −0.404639
\(186\) 0 0
\(187\) 8.95715 0.655012
\(188\) −43.1576 −3.14759
\(189\) 0 0
\(190\) 9.12311 0.661860
\(191\) 13.1231 0.949555 0.474777 0.880106i \(-0.342529\pi\)
0.474777 + 0.880106i \(0.342529\pi\)
\(192\) 0 0
\(193\) −12.5438 −0.902924 −0.451462 0.892290i \(-0.649097\pi\)
−0.451462 + 0.892290i \(0.649097\pi\)
\(194\) 11.0380 0.792485
\(195\) 0 0
\(196\) 2.74012 0.195723
\(197\) −3.88544 −0.276826 −0.138413 0.990375i \(-0.544200\pi\)
−0.138413 + 0.990375i \(0.544200\pi\)
\(198\) 0 0
\(199\) 22.1612 1.57096 0.785481 0.618886i \(-0.212416\pi\)
0.785481 + 0.618886i \(0.212416\pi\)
\(200\) −8.76763 −0.619965
\(201\) 0 0
\(202\) 33.1183 2.33020
\(203\) 25.2479 1.77205
\(204\) 0 0
\(205\) −1.20608 −0.0842364
\(206\) −16.2964 −1.13543
\(207\) 0 0
\(208\) −32.2867 −2.23868
\(209\) 11.4721 0.793542
\(210\) 0 0
\(211\) 4.81048 0.331167 0.165584 0.986196i \(-0.447049\pi\)
0.165584 + 0.986196i \(0.447049\pi\)
\(212\) 55.3976 3.80473
\(213\) 0 0
\(214\) 35.4325 2.42211
\(215\) −3.02511 −0.206311
\(216\) 0 0
\(217\) 14.0090 0.950996
\(218\) 46.1086 3.12287
\(219\) 0 0
\(220\) −17.7992 −1.20002
\(221\) −6.51496 −0.438243
\(222\) 0 0
\(223\) 13.7815 0.922876 0.461438 0.887172i \(-0.347334\pi\)
0.461438 + 0.887172i \(0.347334\pi\)
\(224\) 48.7215 3.25534
\(225\) 0 0
\(226\) 11.7992 0.784872
\(227\) −29.1012 −1.93151 −0.965757 0.259447i \(-0.916460\pi\)
−0.965757 + 0.259447i \(0.916460\pi\)
\(228\) 0 0
\(229\) −9.38705 −0.620314 −0.310157 0.950685i \(-0.600382\pi\)
−0.310157 + 0.950685i \(0.600382\pi\)
\(230\) 2.69353 0.177606
\(231\) 0 0
\(232\) 80.7156 5.29924
\(233\) 12.6725 0.830202 0.415101 0.909775i \(-0.363746\pi\)
0.415101 + 0.909775i \(0.363746\pi\)
\(234\) 0 0
\(235\) 8.21255 0.535728
\(236\) −43.5257 −2.83328
\(237\) 0 0
\(238\) 19.5353 1.26628
\(239\) −19.1883 −1.24119 −0.620596 0.784131i \(-0.713109\pi\)
−0.620596 + 0.784131i \(0.713109\pi\)
\(240\) 0 0
\(241\) 16.7741 1.08051 0.540257 0.841500i \(-0.318327\pi\)
0.540257 + 0.841500i \(0.318327\pi\)
\(242\) −1.27164 −0.0817442
\(243\) 0 0
\(244\) 1.38705 0.0887968
\(245\) −0.521423 −0.0333125
\(246\) 0 0
\(247\) −8.34420 −0.530929
\(248\) 44.7859 2.84391
\(249\) 0 0
\(250\) 2.69353 0.170353
\(251\) 22.8114 1.43984 0.719921 0.694056i \(-0.244178\pi\)
0.719921 + 0.694056i \(0.244178\pi\)
\(252\) 0 0
\(253\) 3.38705 0.212942
\(254\) 49.7191 3.11966
\(255\) 0 0
\(256\) 18.0162 1.12602
\(257\) 23.7526 1.48165 0.740824 0.671699i \(-0.234435\pi\)
0.740824 + 0.671699i \(0.234435\pi\)
\(258\) 0 0
\(259\) −15.0940 −0.937895
\(260\) 12.9462 0.802889
\(261\) 0 0
\(262\) −10.4195 −0.643718
\(263\) −16.5895 −1.02295 −0.511476 0.859297i \(-0.670901\pi\)
−0.511476 + 0.859297i \(0.670901\pi\)
\(264\) 0 0
\(265\) −10.5417 −0.647574
\(266\) 25.0203 1.53409
\(267\) 0 0
\(268\) −40.3046 −2.46199
\(269\) 8.47495 0.516727 0.258363 0.966048i \(-0.416817\pi\)
0.258363 + 0.966048i \(0.416817\pi\)
\(270\) 0 0
\(271\) −21.3029 −1.29406 −0.647030 0.762465i \(-0.723989\pi\)
−0.647030 + 0.762465i \(0.723989\pi\)
\(272\) 34.6584 2.10147
\(273\) 0 0
\(274\) 55.6787 3.36367
\(275\) 3.38705 0.204247
\(276\) 0 0
\(277\) 21.9615 1.31954 0.659770 0.751467i \(-0.270654\pi\)
0.659770 + 0.751467i \(0.270654\pi\)
\(278\) −33.8851 −2.03229
\(279\) 0 0
\(280\) −24.0454 −1.43699
\(281\) −19.9020 −1.18725 −0.593627 0.804740i \(-0.702305\pi\)
−0.593627 + 0.804740i \(0.702305\pi\)
\(282\) 0 0
\(283\) −8.87781 −0.527731 −0.263865 0.964559i \(-0.584997\pi\)
−0.263865 + 0.964559i \(0.584997\pi\)
\(284\) 0.0789107 0.00468249
\(285\) 0 0
\(286\) 22.4753 1.32899
\(287\) −3.30771 −0.195248
\(288\) 0 0
\(289\) −10.0065 −0.588616
\(290\) −24.7968 −1.45612
\(291\) 0 0
\(292\) −29.0944 −1.70262
\(293\) −23.9709 −1.40039 −0.700197 0.713950i \(-0.746904\pi\)
−0.700197 + 0.713950i \(0.746904\pi\)
\(294\) 0 0
\(295\) 8.28259 0.482231
\(296\) −48.2543 −2.80473
\(297\) 0 0
\(298\) 30.9353 1.79203
\(299\) −2.46356 −0.142471
\(300\) 0 0
\(301\) −8.29644 −0.478199
\(302\) 15.0478 0.865905
\(303\) 0 0
\(304\) 44.3896 2.54592
\(305\) −0.263945 −0.0151134
\(306\) 0 0
\(307\) 12.0632 0.688481 0.344240 0.938882i \(-0.388136\pi\)
0.344240 + 0.938882i \(0.388136\pi\)
\(308\) −48.8147 −2.78148
\(309\) 0 0
\(310\) −13.7588 −0.781446
\(311\) 6.81257 0.386305 0.193153 0.981169i \(-0.438129\pi\)
0.193153 + 0.981169i \(0.438129\pi\)
\(312\) 0 0
\(313\) −6.38539 −0.360923 −0.180462 0.983582i \(-0.557759\pi\)
−0.180462 + 0.983582i \(0.557759\pi\)
\(314\) −15.7992 −0.891601
\(315\) 0 0
\(316\) −45.5936 −2.56484
\(317\) −16.8114 −0.944222 −0.472111 0.881539i \(-0.656508\pi\)
−0.472111 + 0.881539i \(0.656508\pi\)
\(318\) 0 0
\(319\) −31.1815 −1.74583
\(320\) −21.6397 −1.20970
\(321\) 0 0
\(322\) 7.38705 0.411664
\(323\) 8.95715 0.498389
\(324\) 0 0
\(325\) −2.46356 −0.136654
\(326\) −0.125506 −0.00695115
\(327\) 0 0
\(328\) −10.5745 −0.583878
\(329\) 22.5231 1.24174
\(330\) 0 0
\(331\) 3.29114 0.180898 0.0904488 0.995901i \(-0.471170\pi\)
0.0904488 + 0.995901i \(0.471170\pi\)
\(332\) 18.5054 1.01561
\(333\) 0 0
\(334\) −6.05023 −0.331054
\(335\) 7.66964 0.419037
\(336\) 0 0
\(337\) −7.90201 −0.430450 −0.215225 0.976565i \(-0.569048\pi\)
−0.215225 + 0.976565i \(0.569048\pi\)
\(338\) 18.6685 1.01543
\(339\) 0 0
\(340\) −13.8972 −0.753682
\(341\) −17.3014 −0.936921
\(342\) 0 0
\(343\) 17.7676 0.959362
\(344\) −26.5231 −1.43003
\(345\) 0 0
\(346\) 21.5830 1.16031
\(347\) 19.4024 1.04158 0.520789 0.853686i \(-0.325638\pi\)
0.520789 + 0.853686i \(0.325638\pi\)
\(348\) 0 0
\(349\) −33.1664 −1.77536 −0.887680 0.460462i \(-0.847684\pi\)
−0.887680 + 0.460462i \(0.847684\pi\)
\(350\) 7.38705 0.394854
\(351\) 0 0
\(352\) −60.1717 −3.20716
\(353\) 29.8960 1.59121 0.795603 0.605819i \(-0.207154\pi\)
0.795603 + 0.605819i \(0.207154\pi\)
\(354\) 0 0
\(355\) −0.0150161 −0.000796971 0
\(356\) 24.5054 1.29878
\(357\) 0 0
\(358\) −32.2187 −1.70281
\(359\) 24.9725 1.31800 0.659000 0.752143i \(-0.270980\pi\)
0.659000 + 0.752143i \(0.270980\pi\)
\(360\) 0 0
\(361\) −7.52789 −0.396205
\(362\) 47.0835 2.47465
\(363\) 0 0
\(364\) 35.5052 1.86098
\(365\) 5.53644 0.289790
\(366\) 0 0
\(367\) 15.8179 0.825686 0.412843 0.910802i \(-0.364536\pi\)
0.412843 + 0.910802i \(0.364536\pi\)
\(368\) 13.1057 0.683181
\(369\) 0 0
\(370\) 14.8243 0.770680
\(371\) −28.9109 −1.50098
\(372\) 0 0
\(373\) 22.6283 1.17165 0.585826 0.810437i \(-0.300770\pi\)
0.585826 + 0.810437i \(0.300770\pi\)
\(374\) −24.1263 −1.24754
\(375\) 0 0
\(376\) 72.0046 3.71335
\(377\) 22.6797 1.16807
\(378\) 0 0
\(379\) 10.2721 0.527641 0.263821 0.964572i \(-0.415017\pi\)
0.263821 + 0.964572i \(0.415017\pi\)
\(380\) −17.7992 −0.913080
\(381\) 0 0
\(382\) −35.3474 −1.80853
\(383\) −6.21463 −0.317553 −0.158776 0.987315i \(-0.550755\pi\)
−0.158776 + 0.987315i \(0.550755\pi\)
\(384\) 0 0
\(385\) 9.28906 0.473414
\(386\) 33.7871 1.71972
\(387\) 0 0
\(388\) −21.5353 −1.09329
\(389\) −27.6414 −1.40147 −0.700737 0.713420i \(-0.747145\pi\)
−0.700737 + 0.713420i \(0.747145\pi\)
\(390\) 0 0
\(391\) 2.64453 0.133740
\(392\) −4.57165 −0.230903
\(393\) 0 0
\(394\) 10.4655 0.527246
\(395\) 8.67611 0.436542
\(396\) 0 0
\(397\) 1.07171 0.0537875 0.0268938 0.999638i \(-0.491438\pi\)
0.0268938 + 0.999638i \(0.491438\pi\)
\(398\) −59.6916 −2.99207
\(399\) 0 0
\(400\) 13.1057 0.655284
\(401\) −1.49798 −0.0748053 −0.0374027 0.999300i \(-0.511908\pi\)
−0.0374027 + 0.999300i \(0.511908\pi\)
\(402\) 0 0
\(403\) 12.5841 0.626858
\(404\) −64.6139 −3.21466
\(405\) 0 0
\(406\) −68.0058 −3.37507
\(407\) 18.6413 0.924014
\(408\) 0 0
\(409\) 20.9373 1.03528 0.517642 0.855597i \(-0.326810\pi\)
0.517642 + 0.855597i \(0.326810\pi\)
\(410\) 3.24861 0.160438
\(411\) 0 0
\(412\) 31.7944 1.56640
\(413\) 22.7152 1.11774
\(414\) 0 0
\(415\) −3.52142 −0.172860
\(416\) 43.7657 2.14579
\(417\) 0 0
\(418\) −30.9004 −1.51139
\(419\) 18.7564 0.916309 0.458154 0.888873i \(-0.348511\pi\)
0.458154 + 0.888873i \(0.348511\pi\)
\(420\) 0 0
\(421\) 20.6163 1.00478 0.502388 0.864642i \(-0.332455\pi\)
0.502388 + 0.864642i \(0.332455\pi\)
\(422\) −12.9572 −0.630744
\(423\) 0 0
\(424\) −92.4261 −4.48861
\(425\) 2.64453 0.128279
\(426\) 0 0
\(427\) −0.723874 −0.0350307
\(428\) −69.1289 −3.34147
\(429\) 0 0
\(430\) 8.14822 0.392942
\(431\) −27.0155 −1.30129 −0.650646 0.759381i \(-0.725502\pi\)
−0.650646 + 0.759381i \(0.725502\pi\)
\(432\) 0 0
\(433\) −25.2900 −1.21536 −0.607679 0.794183i \(-0.707899\pi\)
−0.607679 + 0.794183i \(0.707899\pi\)
\(434\) −37.7337 −1.81128
\(435\) 0 0
\(436\) −89.9580 −4.30821
\(437\) 3.38705 0.162025
\(438\) 0 0
\(439\) 34.4110 1.64235 0.821174 0.570679i \(-0.193320\pi\)
0.821174 + 0.570679i \(0.193320\pi\)
\(440\) 29.6964 1.41572
\(441\) 0 0
\(442\) 17.5482 0.834683
\(443\) 29.8281 1.41717 0.708587 0.705623i \(-0.249333\pi\)
0.708587 + 0.705623i \(0.249333\pi\)
\(444\) 0 0
\(445\) −4.66318 −0.221056
\(446\) −37.1208 −1.75772
\(447\) 0 0
\(448\) −59.3474 −2.80390
\(449\) 2.67456 0.126220 0.0631102 0.998007i \(-0.479898\pi\)
0.0631102 + 0.998007i \(0.479898\pi\)
\(450\) 0 0
\(451\) 4.08506 0.192358
\(452\) −23.0203 −1.08278
\(453\) 0 0
\(454\) 78.3848 3.67878
\(455\) −6.75637 −0.316743
\(456\) 0 0
\(457\) −30.9037 −1.44561 −0.722806 0.691051i \(-0.757148\pi\)
−0.722806 + 0.691051i \(0.757148\pi\)
\(458\) 25.2843 1.18146
\(459\) 0 0
\(460\) −5.25508 −0.245019
\(461\) 26.6022 1.23899 0.619493 0.785002i \(-0.287338\pi\)
0.619493 + 0.785002i \(0.287338\pi\)
\(462\) 0 0
\(463\) 26.7013 1.24092 0.620458 0.784239i \(-0.286947\pi\)
0.620458 + 0.784239i \(0.286947\pi\)
\(464\) −120.652 −5.60113
\(465\) 0 0
\(466\) −34.1336 −1.58121
\(467\) −35.2503 −1.63119 −0.815596 0.578622i \(-0.803590\pi\)
−0.815596 + 0.578622i \(0.803590\pi\)
\(468\) 0 0
\(469\) 21.0342 0.971267
\(470\) −22.1207 −1.02035
\(471\) 0 0
\(472\) 72.6187 3.34255
\(473\) 10.2462 0.471121
\(474\) 0 0
\(475\) 3.38705 0.155409
\(476\) −38.1134 −1.74692
\(477\) 0 0
\(478\) 51.6843 2.36398
\(479\) 39.0705 1.78518 0.892589 0.450871i \(-0.148886\pi\)
0.892589 + 0.450871i \(0.148886\pi\)
\(480\) 0 0
\(481\) −13.5587 −0.618222
\(482\) −45.1815 −2.05796
\(483\) 0 0
\(484\) 2.48098 0.112772
\(485\) 4.09799 0.186080
\(486\) 0 0
\(487\) 24.0839 1.09135 0.545673 0.837998i \(-0.316274\pi\)
0.545673 + 0.837998i \(0.316274\pi\)
\(488\) −2.31417 −0.104758
\(489\) 0 0
\(490\) 1.40447 0.0634474
\(491\) −5.60051 −0.252748 −0.126374 0.991983i \(-0.540334\pi\)
−0.126374 + 0.991983i \(0.540334\pi\)
\(492\) 0 0
\(493\) −24.3458 −1.09648
\(494\) 22.4753 1.01121
\(495\) 0 0
\(496\) −66.9450 −3.00592
\(497\) −0.0411819 −0.00184726
\(498\) 0 0
\(499\) 9.53319 0.426764 0.213382 0.976969i \(-0.431552\pi\)
0.213382 + 0.976969i \(0.431552\pi\)
\(500\) −5.25508 −0.235014
\(501\) 0 0
\(502\) −61.4431 −2.74234
\(503\) −14.0568 −0.626762 −0.313381 0.949627i \(-0.601462\pi\)
−0.313381 + 0.949627i \(0.601462\pi\)
\(504\) 0 0
\(505\) 12.2955 0.547144
\(506\) −9.12311 −0.405572
\(507\) 0 0
\(508\) −97.0022 −4.30378
\(509\) −21.7105 −0.962302 −0.481151 0.876638i \(-0.659781\pi\)
−0.481151 + 0.876638i \(0.659781\pi\)
\(510\) 0 0
\(511\) 15.1838 0.671692
\(512\) −3.01385 −0.133194
\(513\) 0 0
\(514\) −63.9783 −2.82196
\(515\) −6.05023 −0.266605
\(516\) 0 0
\(517\) −27.8163 −1.22336
\(518\) 40.6560 1.78632
\(519\) 0 0
\(520\) −21.5996 −0.947205
\(521\) 8.87689 0.388904 0.194452 0.980912i \(-0.437707\pi\)
0.194452 + 0.980912i \(0.437707\pi\)
\(522\) 0 0
\(523\) −0.0550279 −0.00240620 −0.00120310 0.999999i \(-0.500383\pi\)
−0.00120310 + 0.999999i \(0.500383\pi\)
\(524\) 20.3285 0.888053
\(525\) 0 0
\(526\) 44.6842 1.94833
\(527\) −13.5085 −0.588439
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 28.3944 1.23338
\(531\) 0 0
\(532\) −48.8147 −2.11639
\(533\) −2.97126 −0.128699
\(534\) 0 0
\(535\) 13.1547 0.568727
\(536\) 67.2446 2.90453
\(537\) 0 0
\(538\) −22.8275 −0.984163
\(539\) 1.76609 0.0760708
\(540\) 0 0
\(541\) 5.99070 0.257560 0.128780 0.991673i \(-0.458894\pi\)
0.128780 + 0.991673i \(0.458894\pi\)
\(542\) 57.3799 2.46468
\(543\) 0 0
\(544\) −46.9807 −2.01428
\(545\) 17.1183 0.733268
\(546\) 0 0
\(547\) −0.408533 −0.0174676 −0.00873380 0.999962i \(-0.502780\pi\)
−0.00873380 + 0.999962i \(0.502780\pi\)
\(548\) −108.629 −4.64042
\(549\) 0 0
\(550\) −9.12311 −0.389011
\(551\) −31.1815 −1.32837
\(552\) 0 0
\(553\) 23.7944 1.01184
\(554\) −59.1539 −2.51321
\(555\) 0 0
\(556\) 66.1099 2.80369
\(557\) 5.46406 0.231519 0.115760 0.993277i \(-0.463070\pi\)
0.115760 + 0.993277i \(0.463070\pi\)
\(558\) 0 0
\(559\) −7.45255 −0.315209
\(560\) 35.9426 1.51885
\(561\) 0 0
\(562\) 53.6066 2.26126
\(563\) 41.8212 1.76255 0.881277 0.472601i \(-0.156685\pi\)
0.881277 + 0.472601i \(0.156685\pi\)
\(564\) 0 0
\(565\) 4.38058 0.184293
\(566\) 23.9126 1.00512
\(567\) 0 0
\(568\) −0.131656 −0.00552415
\(569\) −39.5127 −1.65646 −0.828230 0.560388i \(-0.810652\pi\)
−0.828230 + 0.560388i \(0.810652\pi\)
\(570\) 0 0
\(571\) −24.4924 −1.02498 −0.512488 0.858694i \(-0.671276\pi\)
−0.512488 + 0.858694i \(0.671276\pi\)
\(572\) −43.8494 −1.83344
\(573\) 0 0
\(574\) 8.90939 0.371871
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −36.3382 −1.51278 −0.756390 0.654121i \(-0.773039\pi\)
−0.756390 + 0.654121i \(0.773039\pi\)
\(578\) 26.9527 1.12108
\(579\) 0 0
\(580\) 48.3787 2.00882
\(581\) −9.65758 −0.400664
\(582\) 0 0
\(583\) 35.7054 1.47877
\(584\) 48.5415 2.00866
\(585\) 0 0
\(586\) 64.5662 2.66720
\(587\) −5.89358 −0.243254 −0.121627 0.992576i \(-0.538811\pi\)
−0.121627 + 0.992576i \(0.538811\pi\)
\(588\) 0 0
\(589\) −17.3014 −0.712890
\(590\) −22.3094 −0.918462
\(591\) 0 0
\(592\) 72.1296 2.96451
\(593\) 11.0931 0.455538 0.227769 0.973715i \(-0.426857\pi\)
0.227769 + 0.973715i \(0.426857\pi\)
\(594\) 0 0
\(595\) 7.25268 0.297331
\(596\) −60.3548 −2.47223
\(597\) 0 0
\(598\) 6.63566 0.271352
\(599\) −40.1864 −1.64197 −0.820986 0.570949i \(-0.806575\pi\)
−0.820986 + 0.570949i \(0.806575\pi\)
\(600\) 0 0
\(601\) 41.1965 1.68044 0.840220 0.542246i \(-0.182426\pi\)
0.840220 + 0.542246i \(0.182426\pi\)
\(602\) 22.3467 0.910782
\(603\) 0 0
\(604\) −29.3584 −1.19457
\(605\) −0.472110 −0.0191940
\(606\) 0 0
\(607\) −16.6283 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(608\) −60.1717 −2.44029
\(609\) 0 0
\(610\) 0.710942 0.0287852
\(611\) 20.2321 0.818504
\(612\) 0 0
\(613\) 25.5052 1.03015 0.515073 0.857146i \(-0.327765\pi\)
0.515073 + 0.857146i \(0.327765\pi\)
\(614\) −32.4924 −1.31129
\(615\) 0 0
\(616\) 81.4431 3.28143
\(617\) 3.14742 0.126710 0.0633552 0.997991i \(-0.479820\pi\)
0.0633552 + 0.997991i \(0.479820\pi\)
\(618\) 0 0
\(619\) −39.2665 −1.57825 −0.789127 0.614230i \(-0.789467\pi\)
−0.789127 + 0.614230i \(0.789467\pi\)
\(620\) 26.8434 1.07806
\(621\) 0 0
\(622\) −18.3498 −0.735761
\(623\) −12.7889 −0.512375
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 17.1992 0.687418
\(627\) 0 0
\(628\) 30.8243 1.23002
\(629\) 14.5547 0.580333
\(630\) 0 0
\(631\) 18.2916 0.728179 0.364089 0.931364i \(-0.381380\pi\)
0.364089 + 0.931364i \(0.381380\pi\)
\(632\) 76.0689 3.02586
\(633\) 0 0
\(634\) 45.2819 1.79837
\(635\) 18.4588 0.732514
\(636\) 0 0
\(637\) −1.28456 −0.0508960
\(638\) 83.9881 3.32512
\(639\) 0 0
\(640\) 22.7567 0.899537
\(641\) −28.5304 −1.12688 −0.563441 0.826157i \(-0.690523\pi\)
−0.563441 + 0.826157i \(0.690523\pi\)
\(642\) 0 0
\(643\) −12.2430 −0.482815 −0.241408 0.970424i \(-0.577609\pi\)
−0.241408 + 0.970424i \(0.577609\pi\)
\(644\) −14.4122 −0.567919
\(645\) 0 0
\(646\) −24.1263 −0.949237
\(647\) −3.11947 −0.122639 −0.0613196 0.998118i \(-0.519531\pi\)
−0.0613196 + 0.998118i \(0.519531\pi\)
\(648\) 0 0
\(649\) −28.0536 −1.10120
\(650\) 6.63566 0.260272
\(651\) 0 0
\(652\) 0.244863 0.00958958
\(653\) 21.7301 0.850364 0.425182 0.905108i \(-0.360210\pi\)
0.425182 + 0.905108i \(0.360210\pi\)
\(654\) 0 0
\(655\) −3.86834 −0.151149
\(656\) 15.8065 0.617141
\(657\) 0 0
\(658\) −60.6665 −2.36503
\(659\) 12.2333 0.476541 0.238270 0.971199i \(-0.423420\pi\)
0.238270 + 0.971199i \(0.423420\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −8.86477 −0.344539
\(663\) 0 0
\(664\) −30.8746 −1.19817
\(665\) 9.28906 0.360214
\(666\) 0 0
\(667\) −9.20608 −0.356461
\(668\) 11.8040 0.456711
\(669\) 0 0
\(670\) −20.6584 −0.798103
\(671\) 0.893994 0.0345123
\(672\) 0 0
\(673\) 10.7900 0.415925 0.207963 0.978137i \(-0.433317\pi\)
0.207963 + 0.978137i \(0.433317\pi\)
\(674\) 21.2843 0.819839
\(675\) 0 0
\(676\) −36.4223 −1.40086
\(677\) −23.6721 −0.909793 −0.454896 0.890544i \(-0.650324\pi\)
−0.454896 + 0.890544i \(0.650324\pi\)
\(678\) 0 0
\(679\) 11.2388 0.431307
\(680\) 23.1863 0.889153
\(681\) 0 0
\(682\) 46.6016 1.78447
\(683\) 10.3583 0.396350 0.198175 0.980167i \(-0.436499\pi\)
0.198175 + 0.980167i \(0.436499\pi\)
\(684\) 0 0
\(685\) 20.6713 0.789810
\(686\) −47.8576 −1.82721
\(687\) 0 0
\(688\) 39.6462 1.51150
\(689\) −25.9702 −0.989386
\(690\) 0 0
\(691\) 13.5578 0.515763 0.257882 0.966177i \(-0.416976\pi\)
0.257882 + 0.966177i \(0.416976\pi\)
\(692\) −42.1086 −1.60073
\(693\) 0 0
\(694\) −52.2610 −1.98380
\(695\) −12.5802 −0.477194
\(696\) 0 0
\(697\) 3.18952 0.120812
\(698\) 89.3347 3.38137
\(699\) 0 0
\(700\) −14.4122 −0.544729
\(701\) 21.3774 0.807415 0.403708 0.914888i \(-0.367721\pi\)
0.403708 + 0.914888i \(0.367721\pi\)
\(702\) 0 0
\(703\) 18.6413 0.703069
\(704\) 73.2948 2.76240
\(705\) 0 0
\(706\) −80.5257 −3.03063
\(707\) 33.7207 1.26820
\(708\) 0 0
\(709\) 30.3719 1.14064 0.570320 0.821422i \(-0.306819\pi\)
0.570320 + 0.821422i \(0.306819\pi\)
\(710\) 0.0404462 0.00151792
\(711\) 0 0
\(712\) −40.8850 −1.53223
\(713\) −5.10809 −0.191299
\(714\) 0 0
\(715\) 8.34420 0.312056
\(716\) 62.8588 2.34914
\(717\) 0 0
\(718\) −67.2642 −2.51028
\(719\) −8.41851 −0.313958 −0.156979 0.987602i \(-0.550175\pi\)
−0.156979 + 0.987602i \(0.550175\pi\)
\(720\) 0 0
\(721\) −16.5929 −0.617951
\(722\) 20.2766 0.754615
\(723\) 0 0
\(724\) −91.8600 −3.41395
\(725\) −9.20608 −0.341905
\(726\) 0 0
\(727\) 19.7505 0.732507 0.366253 0.930515i \(-0.380640\pi\)
0.366253 + 0.930515i \(0.380640\pi\)
\(728\) −59.2374 −2.19548
\(729\) 0 0
\(730\) −14.9125 −0.551938
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 19.7280 0.728670 0.364335 0.931268i \(-0.381296\pi\)
0.364335 + 0.931268i \(0.381296\pi\)
\(734\) −42.6058 −1.57261
\(735\) 0 0
\(736\) −17.7652 −0.654835
\(737\) −25.9775 −0.956892
\(738\) 0 0
\(739\) −0.180969 −0.00665704 −0.00332852 0.999994i \(-0.501060\pi\)
−0.00332852 + 0.999994i \(0.501060\pi\)
\(740\) −28.9223 −1.06321
\(741\) 0 0
\(742\) 77.8723 2.85878
\(743\) −6.05023 −0.221961 −0.110981 0.993823i \(-0.535399\pi\)
−0.110981 + 0.993823i \(0.535399\pi\)
\(744\) 0 0
\(745\) 11.4850 0.420779
\(746\) −60.9500 −2.23154
\(747\) 0 0
\(748\) 47.0705 1.72107
\(749\) 36.0770 1.31823
\(750\) 0 0
\(751\) −21.5659 −0.786952 −0.393476 0.919335i \(-0.628728\pi\)
−0.393476 + 0.919335i \(0.628728\pi\)
\(752\) −107.631 −3.92490
\(753\) 0 0
\(754\) −61.0885 −2.22471
\(755\) 5.58667 0.203320
\(756\) 0 0
\(757\) −24.7798 −0.900638 −0.450319 0.892868i \(-0.648690\pi\)
−0.450319 + 0.892868i \(0.648690\pi\)
\(758\) −27.6681 −1.00495
\(759\) 0 0
\(760\) 29.6964 1.07720
\(761\) −2.29916 −0.0833443 −0.0416722 0.999131i \(-0.513269\pi\)
−0.0416722 + 0.999131i \(0.513269\pi\)
\(762\) 0 0
\(763\) 46.9473 1.69961
\(764\) 68.9629 2.49499
\(765\) 0 0
\(766\) 16.7393 0.604814
\(767\) 20.4047 0.736770
\(768\) 0 0
\(769\) −10.3692 −0.373923 −0.186961 0.982367i \(-0.559864\pi\)
−0.186961 + 0.982367i \(0.559864\pi\)
\(770\) −25.0203 −0.901669
\(771\) 0 0
\(772\) −65.9187 −2.37247
\(773\) −12.7864 −0.459895 −0.229947 0.973203i \(-0.573855\pi\)
−0.229947 + 0.973203i \(0.573855\pi\)
\(774\) 0 0
\(775\) −5.10809 −0.183488
\(776\) 35.9297 1.28980
\(777\) 0 0
\(778\) 74.4528 2.66926
\(779\) 4.08506 0.146362
\(780\) 0 0
\(781\) 0.0508602 0.00181992
\(782\) −7.12311 −0.254722
\(783\) 0 0
\(784\) 6.83361 0.244058
\(785\) −5.86563 −0.209353
\(786\) 0 0
\(787\) −34.9239 −1.24490 −0.622451 0.782659i \(-0.713863\pi\)
−0.622451 + 0.782659i \(0.713863\pi\)
\(788\) −20.4183 −0.727372
\(789\) 0 0
\(790\) −23.3693 −0.831443
\(791\) 12.0138 0.427163
\(792\) 0 0
\(793\) −0.650244 −0.0230908
\(794\) −2.88667 −0.102444
\(795\) 0 0
\(796\) 116.459 4.12776
\(797\) −4.87844 −0.172803 −0.0864016 0.996260i \(-0.527537\pi\)
−0.0864016 + 0.996260i \(0.527537\pi\)
\(798\) 0 0
\(799\) −21.7183 −0.768339
\(800\) −17.7652 −0.628096
\(801\) 0 0
\(802\) 4.03483 0.142475
\(803\) −18.7522 −0.661751
\(804\) 0 0
\(805\) 2.74252 0.0966612
\(806\) −33.8956 −1.19392
\(807\) 0 0
\(808\) 107.803 3.79248
\(809\) −18.1498 −0.638112 −0.319056 0.947736i \(-0.603366\pi\)
−0.319056 + 0.947736i \(0.603366\pi\)
\(810\) 0 0
\(811\) 17.8019 0.625110 0.312555 0.949900i \(-0.398815\pi\)
0.312555 + 0.949900i \(0.398815\pi\)
\(812\) 132.680 4.65614
\(813\) 0 0
\(814\) −50.2107 −1.75989
\(815\) −0.0465955 −0.00163217
\(816\) 0 0
\(817\) 10.2462 0.358470
\(818\) −56.3952 −1.97181
\(819\) 0 0
\(820\) −6.33805 −0.221334
\(821\) −32.9701 −1.15066 −0.575332 0.817920i \(-0.695127\pi\)
−0.575332 + 0.817920i \(0.695127\pi\)
\(822\) 0 0
\(823\) −39.5819 −1.37974 −0.689869 0.723935i \(-0.742332\pi\)
−0.689869 + 0.723935i \(0.742332\pi\)
\(824\) −53.0462 −1.84795
\(825\) 0 0
\(826\) −61.1839 −2.12886
\(827\) 1.50849 0.0524554 0.0262277 0.999656i \(-0.491651\pi\)
0.0262277 + 0.999656i \(0.491651\pi\)
\(828\) 0 0
\(829\) −7.66718 −0.266292 −0.133146 0.991096i \(-0.542508\pi\)
−0.133146 + 0.991096i \(0.542508\pi\)
\(830\) 9.48504 0.329231
\(831\) 0 0
\(832\) −53.3108 −1.84822
\(833\) 1.37892 0.0477767
\(834\) 0 0
\(835\) −2.24621 −0.0777333
\(836\) 60.2868 2.08506
\(837\) 0 0
\(838\) −50.5207 −1.74521
\(839\) 8.53602 0.294696 0.147348 0.989085i \(-0.452926\pi\)
0.147348 + 0.989085i \(0.452926\pi\)
\(840\) 0 0
\(841\) 55.7519 1.92248
\(842\) −55.5305 −1.91371
\(843\) 0 0
\(844\) 25.2795 0.870155
\(845\) 6.93087 0.238429
\(846\) 0 0
\(847\) −1.29477 −0.0444889
\(848\) 138.157 4.74432
\(849\) 0 0
\(850\) −7.12311 −0.244321
\(851\) 5.50369 0.188664
\(852\) 0 0
\(853\) −48.0665 −1.64577 −0.822883 0.568211i \(-0.807636\pi\)
−0.822883 + 0.568211i \(0.807636\pi\)
\(854\) 1.94977 0.0667199
\(855\) 0 0
\(856\) 115.335 3.94209
\(857\) −29.4313 −1.00535 −0.502677 0.864474i \(-0.667652\pi\)
−0.502677 + 0.864474i \(0.667652\pi\)
\(858\) 0 0
\(859\) −33.5308 −1.14406 −0.572029 0.820234i \(-0.693843\pi\)
−0.572029 + 0.820234i \(0.693843\pi\)
\(860\) −15.8972 −0.542090
\(861\) 0 0
\(862\) 72.7670 2.47845
\(863\) −6.79483 −0.231299 −0.115649 0.993290i \(-0.536895\pi\)
−0.115649 + 0.993290i \(0.536895\pi\)
\(864\) 0 0
\(865\) 8.01293 0.272448
\(866\) 68.1192 2.31478
\(867\) 0 0
\(868\) 73.6186 2.49878
\(869\) −29.3864 −0.996866
\(870\) 0 0
\(871\) 18.8946 0.640220
\(872\) 150.087 5.08259
\(873\) 0 0
\(874\) −9.12311 −0.308594
\(875\) 2.74252 0.0927141
\(876\) 0 0
\(877\) −21.9904 −0.742563 −0.371281 0.928520i \(-0.621082\pi\)
−0.371281 + 0.928520i \(0.621082\pi\)
\(878\) −92.6869 −3.12803
\(879\) 0 0
\(880\) −44.3896 −1.49637
\(881\) −3.66242 −0.123390 −0.0616951 0.998095i \(-0.519651\pi\)
−0.0616951 + 0.998095i \(0.519651\pi\)
\(882\) 0 0
\(883\) 10.6640 0.358874 0.179437 0.983769i \(-0.442572\pi\)
0.179437 + 0.983769i \(0.442572\pi\)
\(884\) −34.2366 −1.15150
\(885\) 0 0
\(886\) −80.3427 −2.69916
\(887\) −0.481294 −0.0161603 −0.00808014 0.999967i \(-0.502572\pi\)
−0.00808014 + 0.999967i \(0.502572\pi\)
\(888\) 0 0
\(889\) 50.6235 1.69786
\(890\) 12.5604 0.421025
\(891\) 0 0
\(892\) 72.4228 2.42489
\(893\) −27.8163 −0.930837
\(894\) 0 0
\(895\) −11.9615 −0.399830
\(896\) 62.4107 2.08499
\(897\) 0 0
\(898\) −7.20400 −0.240401
\(899\) 47.0255 1.56839
\(900\) 0 0
\(901\) 27.8779 0.928748
\(902\) −11.0032 −0.366367
\(903\) 0 0
\(904\) 38.4074 1.27741
\(905\) 17.4802 0.581063
\(906\) 0 0
\(907\) −50.3078 −1.67044 −0.835222 0.549913i \(-0.814661\pi\)
−0.835222 + 0.549913i \(0.814661\pi\)
\(908\) −152.929 −5.07513
\(909\) 0 0
\(910\) 18.1984 0.603273
\(911\) 39.5103 1.30903 0.654517 0.756047i \(-0.272872\pi\)
0.654517 + 0.756047i \(0.272872\pi\)
\(912\) 0 0
\(913\) 11.9272 0.394734
\(914\) 83.2398 2.75333
\(915\) 0 0
\(916\) −49.3297 −1.62990
\(917\) −10.6090 −0.350341
\(918\) 0 0
\(919\) −10.0307 −0.330881 −0.165441 0.986220i \(-0.552905\pi\)
−0.165441 + 0.986220i \(0.552905\pi\)
\(920\) 8.76763 0.289060
\(921\) 0 0
\(922\) −71.6536 −2.35979
\(923\) −0.0369930 −0.00121764
\(924\) 0 0
\(925\) 5.50369 0.180960
\(926\) −71.9207 −2.36346
\(927\) 0 0
\(928\) 163.548 5.36873
\(929\) −5.83676 −0.191498 −0.0957490 0.995406i \(-0.530525\pi\)
−0.0957490 + 0.995406i \(0.530525\pi\)
\(930\) 0 0
\(931\) 1.76609 0.0578812
\(932\) 66.5949 2.18139
\(933\) 0 0
\(934\) 94.9477 3.10678
\(935\) −8.95715 −0.292930
\(936\) 0 0
\(937\) 37.5175 1.22564 0.612822 0.790221i \(-0.290034\pi\)
0.612822 + 0.790221i \(0.290034\pi\)
\(938\) −56.6560 −1.84989
\(939\) 0 0
\(940\) 43.1576 1.40765
\(941\) −45.6189 −1.48713 −0.743566 0.668662i \(-0.766867\pi\)
−0.743566 + 0.668662i \(0.766867\pi\)
\(942\) 0 0
\(943\) 1.20608 0.0392754
\(944\) −108.549 −3.53297
\(945\) 0 0
\(946\) −27.5984 −0.897302
\(947\) 17.3357 0.563333 0.281667 0.959512i \(-0.409113\pi\)
0.281667 + 0.959512i \(0.409113\pi\)
\(948\) 0 0
\(949\) 13.6394 0.442752
\(950\) −9.12311 −0.295993
\(951\) 0 0
\(952\) 63.5888 2.06093
\(953\) −14.2706 −0.462269 −0.231135 0.972922i \(-0.574244\pi\)
−0.231135 + 0.972922i \(0.574244\pi\)
\(954\) 0 0
\(955\) −13.1231 −0.424654
\(956\) −100.836 −3.26128
\(957\) 0 0
\(958\) −105.237 −3.40007
\(959\) 56.6915 1.83066
\(960\) 0 0
\(961\) −4.90742 −0.158304
\(962\) 36.5206 1.17747
\(963\) 0 0
\(964\) 88.1492 2.83909
\(965\) 12.5438 0.403800
\(966\) 0 0
\(967\) −4.07663 −0.131096 −0.0655478 0.997849i \(-0.520879\pi\)
−0.0655478 + 0.997849i \(0.520879\pi\)
\(968\) −4.13929 −0.133042
\(969\) 0 0
\(970\) −11.0380 −0.354410
\(971\) 20.2988 0.651419 0.325709 0.945470i \(-0.394397\pi\)
0.325709 + 0.945470i \(0.394397\pi\)
\(972\) 0 0
\(973\) −34.5015 −1.10607
\(974\) −64.8706 −2.07859
\(975\) 0 0
\(976\) 3.45918 0.110726
\(977\) 40.3782 1.29181 0.645907 0.763416i \(-0.276479\pi\)
0.645907 + 0.763416i \(0.276479\pi\)
\(978\) 0 0
\(979\) 15.7944 0.504792
\(980\) −2.74012 −0.0875299
\(981\) 0 0
\(982\) 15.0851 0.481386
\(983\) 53.1628 1.69563 0.847815 0.530292i \(-0.177918\pi\)
0.847815 + 0.530292i \(0.177918\pi\)
\(984\) 0 0
\(985\) 3.88544 0.123801
\(986\) 65.5759 2.08836
\(987\) 0 0
\(988\) −43.8494 −1.39504
\(989\) 3.02511 0.0961930
\(990\) 0 0
\(991\) 36.6746 1.16501 0.582503 0.812829i \(-0.302073\pi\)
0.582503 + 0.812829i \(0.302073\pi\)
\(992\) 90.7464 2.88120
\(993\) 0 0
\(994\) 0.110925 0.00351831
\(995\) −22.1612 −0.702556
\(996\) 0 0
\(997\) −11.1189 −0.352140 −0.176070 0.984378i \(-0.556339\pi\)
−0.176070 + 0.984378i \(0.556339\pi\)
\(998\) −25.6779 −0.812819
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.o.1.1 4
3.2 odd 2 115.2.a.c.1.4 4
5.4 even 2 5175.2.a.bx.1.4 4
12.11 even 2 1840.2.a.u.1.4 4
15.2 even 4 575.2.b.e.24.8 8
15.8 even 4 575.2.b.e.24.1 8
15.14 odd 2 575.2.a.h.1.1 4
21.20 even 2 5635.2.a.v.1.4 4
24.5 odd 2 7360.2.a.cj.1.3 4
24.11 even 2 7360.2.a.cg.1.2 4
60.59 even 2 9200.2.a.cl.1.1 4
69.68 even 2 2645.2.a.m.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.a.c.1.4 4 3.2 odd 2
575.2.a.h.1.1 4 15.14 odd 2
575.2.b.e.24.1 8 15.8 even 4
575.2.b.e.24.8 8 15.2 even 4
1035.2.a.o.1.1 4 1.1 even 1 trivial
1840.2.a.u.1.4 4 12.11 even 2
2645.2.a.m.1.4 4 69.68 even 2
5175.2.a.bx.1.4 4 5.4 even 2
5635.2.a.v.1.4 4 21.20 even 2
7360.2.a.cg.1.2 4 24.11 even 2
7360.2.a.cj.1.3 4 24.5 odd 2
9200.2.a.cl.1.1 4 60.59 even 2