Properties

Label 1035.2.a.o.1.1
Level 10351035
Weight 22
Character 1035.1
Self dual yes
Analytic conductor 8.2658.265
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,2,Mod(1,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1035.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.264516609208.26451660920
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+5x+2 x^{4} - 2x^{3} - 4x^{2} + 5x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 115)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.693532.69353 of defining polynomial
Character χ\chi == 1035.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.69353q2+5.25508q41.00000q52.74252q78.76763q8+2.69353q10+3.38705q112.46356q13+7.38705q14+13.1057q16+2.64453q17+3.38705q195.25508q209.12311q22+1.00000q23+1.00000q25+6.63566q2614.4122q289.20608q295.10809q3117.7652q327.12311q34+2.74252q35+5.50369q379.12311q38+8.76763q40+1.20608q41+3.02511q43+17.7992q442.69353q468.21255q47+0.521423q492.69353q5012.9462q52+10.5417q533.38705q55+24.0454q56+24.7968q588.28259q59+0.263945q61+13.7588q62+21.6397q64+2.46356q657.66964q67+13.8972q687.38705q70+0.0150161q715.53644q7314.8243q74+17.7992q769.28906q778.67611q7913.1057q803.24861q82+3.52142q832.64453q858.14822q8629.6964q88+4.66318q89+6.75637q91+5.25508q92+22.1207q943.38705q954.09799q971.40447q98+O(q100)q-2.69353 q^{2} +5.25508 q^{4} -1.00000 q^{5} -2.74252 q^{7} -8.76763 q^{8} +2.69353 q^{10} +3.38705 q^{11} -2.46356 q^{13} +7.38705 q^{14} +13.1057 q^{16} +2.64453 q^{17} +3.38705 q^{19} -5.25508 q^{20} -9.12311 q^{22} +1.00000 q^{23} +1.00000 q^{25} +6.63566 q^{26} -14.4122 q^{28} -9.20608 q^{29} -5.10809 q^{31} -17.7652 q^{32} -7.12311 q^{34} +2.74252 q^{35} +5.50369 q^{37} -9.12311 q^{38} +8.76763 q^{40} +1.20608 q^{41} +3.02511 q^{43} +17.7992 q^{44} -2.69353 q^{46} -8.21255 q^{47} +0.521423 q^{49} -2.69353 q^{50} -12.9462 q^{52} +10.5417 q^{53} -3.38705 q^{55} +24.0454 q^{56} +24.7968 q^{58} -8.28259 q^{59} +0.263945 q^{61} +13.7588 q^{62} +21.6397 q^{64} +2.46356 q^{65} -7.66964 q^{67} +13.8972 q^{68} -7.38705 q^{70} +0.0150161 q^{71} -5.53644 q^{73} -14.8243 q^{74} +17.7992 q^{76} -9.28906 q^{77} -8.67611 q^{79} -13.1057 q^{80} -3.24861 q^{82} +3.52142 q^{83} -2.64453 q^{85} -8.14822 q^{86} -29.6964 q^{88} +4.66318 q^{89} +6.75637 q^{91} +5.25508 q^{92} +22.1207 q^{94} -3.38705 q^{95} -4.09799 q^{97} -1.40447 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2+4q44q53q79q8+2q104q11+12q14+8q16+q174q194q2020q22+4q23+4q25+q2622q2819q29q31+16q98+O(q100) 4 q - 2 q^{2} + 4 q^{4} - 4 q^{5} - 3 q^{7} - 9 q^{8} + 2 q^{10} - 4 q^{11} + 12 q^{14} + 8 q^{16} + q^{17} - 4 q^{19} - 4 q^{20} - 20 q^{22} + 4 q^{23} + 4 q^{25} + q^{26} - 22 q^{28} - 19 q^{29} - q^{31}+ \cdots - 16 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.69353 −1.90461 −0.952305 0.305148i 0.901294π-0.901294\pi
−0.952305 + 0.305148i 0.901294π0.901294\pi
33 0 0
44 5.25508 2.62754
55 −1.00000 −0.447214
66 0 0
77 −2.74252 −1.03658 −0.518288 0.855206i 0.673430π-0.673430\pi
−0.518288 + 0.855206i 0.673430π0.673430\pi
88 −8.76763 −3.09983
99 0 0
1010 2.69353 0.851767
1111 3.38705 1.02123 0.510617 0.859808i 0.329417π-0.329417\pi
0.510617 + 0.859808i 0.329417π0.329417\pi
1212 0 0
1313 −2.46356 −0.683269 −0.341634 0.939833i 0.610980π-0.610980\pi
−0.341634 + 0.939833i 0.610980π0.610980\pi
1414 7.38705 1.97427
1515 0 0
1616 13.1057 3.27642
1717 2.64453 0.641393 0.320696 0.947182i 0.396083π-0.396083\pi
0.320696 + 0.947182i 0.396083π0.396083\pi
1818 0 0
1919 3.38705 0.777043 0.388521 0.921440i 0.372986π-0.372986\pi
0.388521 + 0.921440i 0.372986π0.372986\pi
2020 −5.25508 −1.17507
2121 0 0
2222 −9.12311 −1.94505
2323 1.00000 0.208514
2424 0 0
2525 1.00000 0.200000
2626 6.63566 1.30136
2727 0 0
2828 −14.4122 −2.72364
2929 −9.20608 −1.70953 −0.854763 0.519018i 0.826298π-0.826298\pi
−0.854763 + 0.519018i 0.826298π0.826298\pi
3030 0 0
3131 −5.10809 −0.917440 −0.458720 0.888581i 0.651692π-0.651692\pi
−0.458720 + 0.888581i 0.651692π0.651692\pi
3232 −17.7652 −3.14048
3333 0 0
3434 −7.12311 −1.22160
3535 2.74252 0.463571
3636 0 0
3737 5.50369 0.904801 0.452401 0.891815i 0.350568π-0.350568\pi
0.452401 + 0.891815i 0.350568π0.350568\pi
3838 −9.12311 −1.47996
3939 0 0
4040 8.76763 1.38628
4141 1.20608 0.188358 0.0941792 0.995555i 0.469977π-0.469977\pi
0.0941792 + 0.995555i 0.469977π0.469977\pi
4242 0 0
4343 3.02511 0.461325 0.230663 0.973034i 0.425911π-0.425911\pi
0.230663 + 0.973034i 0.425911π0.425911\pi
4444 17.7992 2.68333
4545 0 0
4646 −2.69353 −0.397139
4747 −8.21255 −1.19792 −0.598962 0.800778i 0.704420π-0.704420\pi
−0.598962 + 0.800778i 0.704420π0.704420\pi
4848 0 0
4949 0.521423 0.0744891
5050 −2.69353 −0.380922
5151 0 0
5252 −12.9462 −1.79532
5353 10.5417 1.44802 0.724009 0.689790i 0.242297π-0.242297\pi
0.724009 + 0.689790i 0.242297π0.242297\pi
5454 0 0
5555 −3.38705 −0.456710
5656 24.0454 3.21321
5757 0 0
5858 24.7968 3.25598
5959 −8.28259 −1.07830 −0.539151 0.842209i 0.681255π-0.681255\pi
−0.539151 + 0.842209i 0.681255π0.681255\pi
6060 0 0
6161 0.263945 0.0337947 0.0168973 0.999857i 0.494621π-0.494621\pi
0.0168973 + 0.999857i 0.494621π0.494621\pi
6262 13.7588 1.74737
6363 0 0
6464 21.6397 2.70497
6565 2.46356 0.305567
6666 0 0
6767 −7.66964 −0.936996 −0.468498 0.883465i 0.655205π-0.655205\pi
−0.468498 + 0.883465i 0.655205π0.655205\pi
6868 13.8972 1.68528
6969 0 0
7070 −7.38705 −0.882921
7171 0.0150161 0.00178208 0.000891041 1.00000i 0.499716π-0.499716\pi
0.000891041 1.00000i 0.499716π0.499716\pi
7272 0 0
7373 −5.53644 −0.647991 −0.323996 0.946059i 0.605026π-0.605026\pi
−0.323996 + 0.946059i 0.605026π0.605026\pi
7474 −14.8243 −1.72329
7575 0 0
7676 17.7992 2.04171
7777 −9.28906 −1.05859
7878 0 0
7979 −8.67611 −0.976138 −0.488069 0.872805i 0.662299π-0.662299\pi
−0.488069 + 0.872805i 0.662299π0.662299\pi
8080 −13.1057 −1.46526
8181 0 0
8282 −3.24861 −0.358749
8383 3.52142 0.386526 0.193263 0.981147i 0.438093π-0.438093\pi
0.193263 + 0.981147i 0.438093π0.438093\pi
8484 0 0
8585 −2.64453 −0.286839
8686 −8.14822 −0.878645
8787 0 0
8888 −29.6964 −3.16565
8989 4.66318 0.494296 0.247148 0.968978i 0.420507π-0.420507\pi
0.247148 + 0.968978i 0.420507π0.420507\pi
9090 0 0
9191 6.75637 0.708260
9292 5.25508 0.547880
9393 0 0
9494 22.1207 2.28158
9595 −3.38705 −0.347504
9696 0 0
9797 −4.09799 −0.416088 −0.208044 0.978119i 0.566710π-0.566710\pi
−0.208044 + 0.978119i 0.566710π0.566710\pi
9898 −1.40447 −0.141873
9999 0 0
100100 5.25508 0.525508
101101 −12.2955 −1.22345 −0.611725 0.791070i 0.709524π-0.709524\pi
−0.611725 + 0.791070i 0.709524π0.709524\pi
102102 0 0
103103 6.05023 0.596147 0.298073 0.954543i 0.403656π-0.403656\pi
0.298073 + 0.954543i 0.403656π0.403656\pi
104104 21.5996 2.11801
105105 0 0
106106 −28.3944 −2.75791
107107 −13.1547 −1.27171 −0.635856 0.771808i 0.719353π-0.719353\pi
−0.635856 + 0.771808i 0.719353π0.719353\pi
108108 0 0
109109 −17.1183 −1.63964 −0.819818 0.572624i 0.805925π-0.805925\pi
−0.819818 + 0.572624i 0.805925π0.805925\pi
110110 9.12311 0.869854
111111 0 0
112112 −35.9426 −3.39626
113113 −4.38058 −0.412091 −0.206045 0.978542i 0.566059π-0.566059\pi
−0.206045 + 0.978542i 0.566059π0.566059\pi
114114 0 0
115115 −1.00000 −0.0932505
116116 −48.3787 −4.49185
117117 0 0
118118 22.3094 2.05374
119119 −7.25268 −0.664852
120120 0 0
121121 0.472110 0.0429191
122122 −0.710942 −0.0643657
123123 0 0
124124 −26.8434 −2.41061
125125 −1.00000 −0.0894427
126126 0 0
127127 −18.4588 −1.63795 −0.818975 0.573829i 0.805457π-0.805457\pi
−0.818975 + 0.573829i 0.805457π0.805457\pi
128128 −22.7567 −2.01143
129129 0 0
130130 −6.63566 −0.581986
131131 3.86834 0.337979 0.168989 0.985618i 0.445950π-0.445950\pi
0.168989 + 0.985618i 0.445950π0.445950\pi
132132 0 0
133133 −9.28906 −0.805463
134134 20.6584 1.78461
135135 0 0
136136 −23.1863 −1.98821
137137 −20.6713 −1.76607 −0.883034 0.469308i 0.844503π-0.844503\pi
−0.883034 + 0.469308i 0.844503π0.844503\pi
138138 0 0
139139 12.5802 1.06704 0.533519 0.845788i 0.320869π-0.320869\pi
0.533519 + 0.845788i 0.320869π0.320869\pi
140140 14.4122 1.21805
141141 0 0
142142 −0.0404462 −0.00339417
143143 −8.34420 −0.697777
144144 0 0
145145 9.20608 0.764523
146146 14.9125 1.23417
147147 0 0
148148 28.9223 2.37740
149149 −11.4850 −0.940891 −0.470446 0.882429i 0.655907π-0.655907\pi
−0.470446 + 0.882429i 0.655907π0.655907\pi
150150 0 0
151151 −5.58667 −0.454636 −0.227318 0.973821i 0.572996π-0.572996\pi
−0.227318 + 0.973821i 0.572996π0.572996\pi
152152 −29.6964 −2.40870
153153 0 0
154154 25.0203 2.01619
155155 5.10809 0.410292
156156 0 0
157157 5.86563 0.468128 0.234064 0.972221i 0.424797π-0.424797\pi
0.234064 + 0.972221i 0.424797π0.424797\pi
158158 23.3693 1.85916
159159 0 0
160160 17.7652 1.40447
161161 −2.74252 −0.216141
162162 0 0
163163 0.0465955 0.00364964 0.00182482 0.999998i 0.499419π-0.499419\pi
0.00182482 + 0.999998i 0.499419π0.499419\pi
164164 6.33805 0.494919
165165 0 0
166166 −9.48504 −0.736182
167167 2.24621 0.173817 0.0869085 0.996216i 0.472301π-0.472301\pi
0.0869085 + 0.996216i 0.472301π0.472301\pi
168168 0 0
169169 −6.93087 −0.533144
170170 7.12311 0.546317
171171 0 0
172172 15.8972 1.21215
173173 −8.01293 −0.609212 −0.304606 0.952478i 0.598525π-0.598525\pi
−0.304606 + 0.952478i 0.598525π0.598525\pi
174174 0 0
175175 −2.74252 −0.207315
176176 44.3896 3.34599
177177 0 0
178178 −12.5604 −0.941440
179179 11.9615 0.894047 0.447024 0.894522i 0.352484π-0.352484\pi
0.447024 + 0.894522i 0.352484π0.352484\pi
180180 0 0
181181 −17.4802 −1.29930 −0.649648 0.760235i 0.725084π-0.725084\pi
−0.649648 + 0.760235i 0.725084π0.725084\pi
182182 −18.1984 −1.34896
183183 0 0
184184 −8.76763 −0.646359
185185 −5.50369 −0.404639
186186 0 0
187187 8.95715 0.655012
188188 −43.1576 −3.14759
189189 0 0
190190 9.12311 0.661860
191191 13.1231 0.949555 0.474777 0.880106i 0.342529π-0.342529\pi
0.474777 + 0.880106i 0.342529π0.342529\pi
192192 0 0
193193 −12.5438 −0.902924 −0.451462 0.892290i 0.649097π-0.649097\pi
−0.451462 + 0.892290i 0.649097π0.649097\pi
194194 11.0380 0.792485
195195 0 0
196196 2.74012 0.195723
197197 −3.88544 −0.276826 −0.138413 0.990375i 0.544200π-0.544200\pi
−0.138413 + 0.990375i 0.544200π0.544200\pi
198198 0 0
199199 22.1612 1.57096 0.785481 0.618886i 0.212416π-0.212416\pi
0.785481 + 0.618886i 0.212416π0.212416\pi
200200 −8.76763 −0.619965
201201 0 0
202202 33.1183 2.33020
203203 25.2479 1.77205
204204 0 0
205205 −1.20608 −0.0842364
206206 −16.2964 −1.13543
207207 0 0
208208 −32.2867 −2.23868
209209 11.4721 0.793542
210210 0 0
211211 4.81048 0.331167 0.165584 0.986196i 0.447049π-0.447049\pi
0.165584 + 0.986196i 0.447049π0.447049\pi
212212 55.3976 3.80473
213213 0 0
214214 35.4325 2.42211
215215 −3.02511 −0.206311
216216 0 0
217217 14.0090 0.950996
218218 46.1086 3.12287
219219 0 0
220220 −17.7992 −1.20002
221221 −6.51496 −0.438243
222222 0 0
223223 13.7815 0.922876 0.461438 0.887172i 0.347334π-0.347334\pi
0.461438 + 0.887172i 0.347334π0.347334\pi
224224 48.7215 3.25534
225225 0 0
226226 11.7992 0.784872
227227 −29.1012 −1.93151 −0.965757 0.259447i 0.916460π-0.916460\pi
−0.965757 + 0.259447i 0.916460π0.916460\pi
228228 0 0
229229 −9.38705 −0.620314 −0.310157 0.950685i 0.600382π-0.600382\pi
−0.310157 + 0.950685i 0.600382π0.600382\pi
230230 2.69353 0.177606
231231 0 0
232232 80.7156 5.29924
233233 12.6725 0.830202 0.415101 0.909775i 0.363746π-0.363746\pi
0.415101 + 0.909775i 0.363746π0.363746\pi
234234 0 0
235235 8.21255 0.535728
236236 −43.5257 −2.83328
237237 0 0
238238 19.5353 1.26628
239239 −19.1883 −1.24119 −0.620596 0.784131i 0.713109π-0.713109\pi
−0.620596 + 0.784131i 0.713109π0.713109\pi
240240 0 0
241241 16.7741 1.08051 0.540257 0.841500i 0.318327π-0.318327\pi
0.540257 + 0.841500i 0.318327π0.318327\pi
242242 −1.27164 −0.0817442
243243 0 0
244244 1.38705 0.0887968
245245 −0.521423 −0.0333125
246246 0 0
247247 −8.34420 −0.530929
248248 44.7859 2.84391
249249 0 0
250250 2.69353 0.170353
251251 22.8114 1.43984 0.719921 0.694056i 0.244178π-0.244178\pi
0.719921 + 0.694056i 0.244178π0.244178\pi
252252 0 0
253253 3.38705 0.212942
254254 49.7191 3.11966
255255 0 0
256256 18.0162 1.12602
257257 23.7526 1.48165 0.740824 0.671699i 0.234435π-0.234435\pi
0.740824 + 0.671699i 0.234435π0.234435\pi
258258 0 0
259259 −15.0940 −0.937895
260260 12.9462 0.802889
261261 0 0
262262 −10.4195 −0.643718
263263 −16.5895 −1.02295 −0.511476 0.859297i 0.670901π-0.670901\pi
−0.511476 + 0.859297i 0.670901π0.670901\pi
264264 0 0
265265 −10.5417 −0.647574
266266 25.0203 1.53409
267267 0 0
268268 −40.3046 −2.46199
269269 8.47495 0.516727 0.258363 0.966048i 0.416817π-0.416817\pi
0.258363 + 0.966048i 0.416817π0.416817\pi
270270 0 0
271271 −21.3029 −1.29406 −0.647030 0.762465i 0.723989π-0.723989\pi
−0.647030 + 0.762465i 0.723989π0.723989\pi
272272 34.6584 2.10147
273273 0 0
274274 55.6787 3.36367
275275 3.38705 0.204247
276276 0 0
277277 21.9615 1.31954 0.659770 0.751467i 0.270654π-0.270654\pi
0.659770 + 0.751467i 0.270654π0.270654\pi
278278 −33.8851 −2.03229
279279 0 0
280280 −24.0454 −1.43699
281281 −19.9020 −1.18725 −0.593627 0.804740i 0.702305π-0.702305\pi
−0.593627 + 0.804740i 0.702305π0.702305\pi
282282 0 0
283283 −8.87781 −0.527731 −0.263865 0.964559i 0.584997π-0.584997\pi
−0.263865 + 0.964559i 0.584997π0.584997\pi
284284 0.0789107 0.00468249
285285 0 0
286286 22.4753 1.32899
287287 −3.30771 −0.195248
288288 0 0
289289 −10.0065 −0.588616
290290 −24.7968 −1.45612
291291 0 0
292292 −29.0944 −1.70262
293293 −23.9709 −1.40039 −0.700197 0.713950i 0.746904π-0.746904\pi
−0.700197 + 0.713950i 0.746904π0.746904\pi
294294 0 0
295295 8.28259 0.482231
296296 −48.2543 −2.80473
297297 0 0
298298 30.9353 1.79203
299299 −2.46356 −0.142471
300300 0 0
301301 −8.29644 −0.478199
302302 15.0478 0.865905
303303 0 0
304304 44.3896 2.54592
305305 −0.263945 −0.0151134
306306 0 0
307307 12.0632 0.688481 0.344240 0.938882i 0.388136π-0.388136\pi
0.344240 + 0.938882i 0.388136π0.388136\pi
308308 −48.8147 −2.78148
309309 0 0
310310 −13.7588 −0.781446
311311 6.81257 0.386305 0.193153 0.981169i 0.438129π-0.438129\pi
0.193153 + 0.981169i 0.438129π0.438129\pi
312312 0 0
313313 −6.38539 −0.360923 −0.180462 0.983582i 0.557759π-0.557759\pi
−0.180462 + 0.983582i 0.557759π0.557759\pi
314314 −15.7992 −0.891601
315315 0 0
316316 −45.5936 −2.56484
317317 −16.8114 −0.944222 −0.472111 0.881539i 0.656508π-0.656508\pi
−0.472111 + 0.881539i 0.656508π0.656508\pi
318318 0 0
319319 −31.1815 −1.74583
320320 −21.6397 −1.20970
321321 0 0
322322 7.38705 0.411664
323323 8.95715 0.498389
324324 0 0
325325 −2.46356 −0.136654
326326 −0.125506 −0.00695115
327327 0 0
328328 −10.5745 −0.583878
329329 22.5231 1.24174
330330 0 0
331331 3.29114 0.180898 0.0904488 0.995901i 0.471170π-0.471170\pi
0.0904488 + 0.995901i 0.471170π0.471170\pi
332332 18.5054 1.01561
333333 0 0
334334 −6.05023 −0.331054
335335 7.66964 0.419037
336336 0 0
337337 −7.90201 −0.430450 −0.215225 0.976565i 0.569048π-0.569048\pi
−0.215225 + 0.976565i 0.569048π0.569048\pi
338338 18.6685 1.01543
339339 0 0
340340 −13.8972 −0.753682
341341 −17.3014 −0.936921
342342 0 0
343343 17.7676 0.959362
344344 −26.5231 −1.43003
345345 0 0
346346 21.5830 1.16031
347347 19.4024 1.04158 0.520789 0.853686i 0.325638π-0.325638\pi
0.520789 + 0.853686i 0.325638π0.325638\pi
348348 0 0
349349 −33.1664 −1.77536 −0.887680 0.460462i 0.847684π-0.847684\pi
−0.887680 + 0.460462i 0.847684π0.847684\pi
350350 7.38705 0.394854
351351 0 0
352352 −60.1717 −3.20716
353353 29.8960 1.59121 0.795603 0.605819i 0.207154π-0.207154\pi
0.795603 + 0.605819i 0.207154π0.207154\pi
354354 0 0
355355 −0.0150161 −0.000796971 0
356356 24.5054 1.29878
357357 0 0
358358 −32.2187 −1.70281
359359 24.9725 1.31800 0.659000 0.752143i 0.270980π-0.270980\pi
0.659000 + 0.752143i 0.270980π0.270980\pi
360360 0 0
361361 −7.52789 −0.396205
362362 47.0835 2.47465
363363 0 0
364364 35.5052 1.86098
365365 5.53644 0.289790
366366 0 0
367367 15.8179 0.825686 0.412843 0.910802i 0.364536π-0.364536\pi
0.412843 + 0.910802i 0.364536π0.364536\pi
368368 13.1057 0.683181
369369 0 0
370370 14.8243 0.770680
371371 −28.9109 −1.50098
372372 0 0
373373 22.6283 1.17165 0.585826 0.810437i 0.300770π-0.300770\pi
0.585826 + 0.810437i 0.300770π0.300770\pi
374374 −24.1263 −1.24754
375375 0 0
376376 72.0046 3.71335
377377 22.6797 1.16807
378378 0 0
379379 10.2721 0.527641 0.263821 0.964572i 0.415017π-0.415017\pi
0.263821 + 0.964572i 0.415017π0.415017\pi
380380 −17.7992 −0.913080
381381 0 0
382382 −35.3474 −1.80853
383383 −6.21463 −0.317553 −0.158776 0.987315i 0.550755π-0.550755\pi
−0.158776 + 0.987315i 0.550755π0.550755\pi
384384 0 0
385385 9.28906 0.473414
386386 33.7871 1.71972
387387 0 0
388388 −21.5353 −1.09329
389389 −27.6414 −1.40147 −0.700737 0.713420i 0.747145π-0.747145\pi
−0.700737 + 0.713420i 0.747145π0.747145\pi
390390 0 0
391391 2.64453 0.133740
392392 −4.57165 −0.230903
393393 0 0
394394 10.4655 0.527246
395395 8.67611 0.436542
396396 0 0
397397 1.07171 0.0537875 0.0268938 0.999638i 0.491438π-0.491438\pi
0.0268938 + 0.999638i 0.491438π0.491438\pi
398398 −59.6916 −2.99207
399399 0 0
400400 13.1057 0.655284
401401 −1.49798 −0.0748053 −0.0374027 0.999300i 0.511908π-0.511908\pi
−0.0374027 + 0.999300i 0.511908π0.511908\pi
402402 0 0
403403 12.5841 0.626858
404404 −64.6139 −3.21466
405405 0 0
406406 −68.0058 −3.37507
407407 18.6413 0.924014
408408 0 0
409409 20.9373 1.03528 0.517642 0.855597i 0.326810π-0.326810\pi
0.517642 + 0.855597i 0.326810π0.326810\pi
410410 3.24861 0.160438
411411 0 0
412412 31.7944 1.56640
413413 22.7152 1.11774
414414 0 0
415415 −3.52142 −0.172860
416416 43.7657 2.14579
417417 0 0
418418 −30.9004 −1.51139
419419 18.7564 0.916309 0.458154 0.888873i 0.348511π-0.348511\pi
0.458154 + 0.888873i 0.348511π0.348511\pi
420420 0 0
421421 20.6163 1.00478 0.502388 0.864642i 0.332455π-0.332455\pi
0.502388 + 0.864642i 0.332455π0.332455\pi
422422 −12.9572 −0.630744
423423 0 0
424424 −92.4261 −4.48861
425425 2.64453 0.128279
426426 0 0
427427 −0.723874 −0.0350307
428428 −69.1289 −3.34147
429429 0 0
430430 8.14822 0.392942
431431 −27.0155 −1.30129 −0.650646 0.759381i 0.725502π-0.725502\pi
−0.650646 + 0.759381i 0.725502π0.725502\pi
432432 0 0
433433 −25.2900 −1.21536 −0.607679 0.794183i 0.707899π-0.707899\pi
−0.607679 + 0.794183i 0.707899π0.707899\pi
434434 −37.7337 −1.81128
435435 0 0
436436 −89.9580 −4.30821
437437 3.38705 0.162025
438438 0 0
439439 34.4110 1.64235 0.821174 0.570679i 0.193320π-0.193320\pi
0.821174 + 0.570679i 0.193320π0.193320\pi
440440 29.6964 1.41572
441441 0 0
442442 17.5482 0.834683
443443 29.8281 1.41717 0.708587 0.705623i 0.249333π-0.249333\pi
0.708587 + 0.705623i 0.249333π0.249333\pi
444444 0 0
445445 −4.66318 −0.221056
446446 −37.1208 −1.75772
447447 0 0
448448 −59.3474 −2.80390
449449 2.67456 0.126220 0.0631102 0.998007i 0.479898π-0.479898\pi
0.0631102 + 0.998007i 0.479898π0.479898\pi
450450 0 0
451451 4.08506 0.192358
452452 −23.0203 −1.08278
453453 0 0
454454 78.3848 3.67878
455455 −6.75637 −0.316743
456456 0 0
457457 −30.9037 −1.44561 −0.722806 0.691051i 0.757148π-0.757148\pi
−0.722806 + 0.691051i 0.757148π0.757148\pi
458458 25.2843 1.18146
459459 0 0
460460 −5.25508 −0.245019
461461 26.6022 1.23899 0.619493 0.785002i 0.287338π-0.287338\pi
0.619493 + 0.785002i 0.287338π0.287338\pi
462462 0 0
463463 26.7013 1.24092 0.620458 0.784239i 0.286947π-0.286947\pi
0.620458 + 0.784239i 0.286947π0.286947\pi
464464 −120.652 −5.60113
465465 0 0
466466 −34.1336 −1.58121
467467 −35.2503 −1.63119 −0.815596 0.578622i 0.803590π-0.803590\pi
−0.815596 + 0.578622i 0.803590π0.803590\pi
468468 0 0
469469 21.0342 0.971267
470470 −22.1207 −1.02035
471471 0 0
472472 72.6187 3.34255
473473 10.2462 0.471121
474474 0 0
475475 3.38705 0.155409
476476 −38.1134 −1.74692
477477 0 0
478478 51.6843 2.36398
479479 39.0705 1.78518 0.892589 0.450871i 0.148886π-0.148886\pi
0.892589 + 0.450871i 0.148886π0.148886\pi
480480 0 0
481481 −13.5587 −0.618222
482482 −45.1815 −2.05796
483483 0 0
484484 2.48098 0.112772
485485 4.09799 0.186080
486486 0 0
487487 24.0839 1.09135 0.545673 0.837998i 0.316274π-0.316274\pi
0.545673 + 0.837998i 0.316274π0.316274\pi
488488 −2.31417 −0.104758
489489 0 0
490490 1.40447 0.0634474
491491 −5.60051 −0.252748 −0.126374 0.991983i 0.540334π-0.540334\pi
−0.126374 + 0.991983i 0.540334π0.540334\pi
492492 0 0
493493 −24.3458 −1.09648
494494 22.4753 1.01121
495495 0 0
496496 −66.9450 −3.00592
497497 −0.0411819 −0.00184726
498498 0 0
499499 9.53319 0.426764 0.213382 0.976969i 0.431552π-0.431552\pi
0.213382 + 0.976969i 0.431552π0.431552\pi
500500 −5.25508 −0.235014
501501 0 0
502502 −61.4431 −2.74234
503503 −14.0568 −0.626762 −0.313381 0.949627i 0.601462π-0.601462\pi
−0.313381 + 0.949627i 0.601462π0.601462\pi
504504 0 0
505505 12.2955 0.547144
506506 −9.12311 −0.405572
507507 0 0
508508 −97.0022 −4.30378
509509 −21.7105 −0.962302 −0.481151 0.876638i 0.659781π-0.659781\pi
−0.481151 + 0.876638i 0.659781π0.659781\pi
510510 0 0
511511 15.1838 0.671692
512512 −3.01385 −0.133194
513513 0 0
514514 −63.9783 −2.82196
515515 −6.05023 −0.266605
516516 0 0
517517 −27.8163 −1.22336
518518 40.6560 1.78632
519519 0 0
520520 −21.5996 −0.947205
521521 8.87689 0.388904 0.194452 0.980912i 0.437707π-0.437707\pi
0.194452 + 0.980912i 0.437707π0.437707\pi
522522 0 0
523523 −0.0550279 −0.00240620 −0.00120310 0.999999i 0.500383π-0.500383\pi
−0.00120310 + 0.999999i 0.500383π0.500383\pi
524524 20.3285 0.888053
525525 0 0
526526 44.6842 1.94833
527527 −13.5085 −0.588439
528528 0 0
529529 1.00000 0.0434783
530530 28.3944 1.23338
531531 0 0
532532 −48.8147 −2.11639
533533 −2.97126 −0.128699
534534 0 0
535535 13.1547 0.568727
536536 67.2446 2.90453
537537 0 0
538538 −22.8275 −0.984163
539539 1.76609 0.0760708
540540 0 0
541541 5.99070 0.257560 0.128780 0.991673i 0.458894π-0.458894\pi
0.128780 + 0.991673i 0.458894π0.458894\pi
542542 57.3799 2.46468
543543 0 0
544544 −46.9807 −2.01428
545545 17.1183 0.733268
546546 0 0
547547 −0.408533 −0.0174676 −0.00873380 0.999962i 0.502780π-0.502780\pi
−0.00873380 + 0.999962i 0.502780π0.502780\pi
548548 −108.629 −4.64042
549549 0 0
550550 −9.12311 −0.389011
551551 −31.1815 −1.32837
552552 0 0
553553 23.7944 1.01184
554554 −59.1539 −2.51321
555555 0 0
556556 66.1099 2.80369
557557 5.46406 0.231519 0.115760 0.993277i 0.463070π-0.463070\pi
0.115760 + 0.993277i 0.463070π0.463070\pi
558558 0 0
559559 −7.45255 −0.315209
560560 35.9426 1.51885
561561 0 0
562562 53.6066 2.26126
563563 41.8212 1.76255 0.881277 0.472601i 0.156685π-0.156685\pi
0.881277 + 0.472601i 0.156685π0.156685\pi
564564 0 0
565565 4.38058 0.184293
566566 23.9126 1.00512
567567 0 0
568568 −0.131656 −0.00552415
569569 −39.5127 −1.65646 −0.828230 0.560388i 0.810652π-0.810652\pi
−0.828230 + 0.560388i 0.810652π0.810652\pi
570570 0 0
571571 −24.4924 −1.02498 −0.512488 0.858694i 0.671276π-0.671276\pi
−0.512488 + 0.858694i 0.671276π0.671276\pi
572572 −43.8494 −1.83344
573573 0 0
574574 8.90939 0.371871
575575 1.00000 0.0417029
576576 0 0
577577 −36.3382 −1.51278 −0.756390 0.654121i 0.773039π-0.773039\pi
−0.756390 + 0.654121i 0.773039π0.773039\pi
578578 26.9527 1.12108
579579 0 0
580580 48.3787 2.00882
581581 −9.65758 −0.400664
582582 0 0
583583 35.7054 1.47877
584584 48.5415 2.00866
585585 0 0
586586 64.5662 2.66720
587587 −5.89358 −0.243254 −0.121627 0.992576i 0.538811π-0.538811\pi
−0.121627 + 0.992576i 0.538811π0.538811\pi
588588 0 0
589589 −17.3014 −0.712890
590590 −22.3094 −0.918462
591591 0 0
592592 72.1296 2.96451
593593 11.0931 0.455538 0.227769 0.973715i 0.426857π-0.426857\pi
0.227769 + 0.973715i 0.426857π0.426857\pi
594594 0 0
595595 7.25268 0.297331
596596 −60.3548 −2.47223
597597 0 0
598598 6.63566 0.271352
599599 −40.1864 −1.64197 −0.820986 0.570949i 0.806575π-0.806575\pi
−0.820986 + 0.570949i 0.806575π0.806575\pi
600600 0 0
601601 41.1965 1.68044 0.840220 0.542246i 0.182426π-0.182426\pi
0.840220 + 0.542246i 0.182426π0.182426\pi
602602 22.3467 0.910782
603603 0 0
604604 −29.3584 −1.19457
605605 −0.472110 −0.0191940
606606 0 0
607607 −16.6283 −0.674924 −0.337462 0.941339i 0.609568π-0.609568\pi
−0.337462 + 0.941339i 0.609568π0.609568\pi
608608 −60.1717 −2.44029
609609 0 0
610610 0.710942 0.0287852
611611 20.2321 0.818504
612612 0 0
613613 25.5052 1.03015 0.515073 0.857146i 0.327765π-0.327765\pi
0.515073 + 0.857146i 0.327765π0.327765\pi
614614 −32.4924 −1.31129
615615 0 0
616616 81.4431 3.28143
617617 3.14742 0.126710 0.0633552 0.997991i 0.479820π-0.479820\pi
0.0633552 + 0.997991i 0.479820π0.479820\pi
618618 0 0
619619 −39.2665 −1.57825 −0.789127 0.614230i 0.789467π-0.789467\pi
−0.789127 + 0.614230i 0.789467π0.789467\pi
620620 26.8434 1.07806
621621 0 0
622622 −18.3498 −0.735761
623623 −12.7889 −0.512375
624624 0 0
625625 1.00000 0.0400000
626626 17.1992 0.687418
627627 0 0
628628 30.8243 1.23002
629629 14.5547 0.580333
630630 0 0
631631 18.2916 0.728179 0.364089 0.931364i 0.381380π-0.381380\pi
0.364089 + 0.931364i 0.381380π0.381380\pi
632632 76.0689 3.02586
633633 0 0
634634 45.2819 1.79837
635635 18.4588 0.732514
636636 0 0
637637 −1.28456 −0.0508960
638638 83.9881 3.32512
639639 0 0
640640 22.7567 0.899537
641641 −28.5304 −1.12688 −0.563441 0.826157i 0.690523π-0.690523\pi
−0.563441 + 0.826157i 0.690523π0.690523\pi
642642 0 0
643643 −12.2430 −0.482815 −0.241408 0.970424i 0.577609π-0.577609\pi
−0.241408 + 0.970424i 0.577609π0.577609\pi
644644 −14.4122 −0.567919
645645 0 0
646646 −24.1263 −0.949237
647647 −3.11947 −0.122639 −0.0613196 0.998118i 0.519531π-0.519531\pi
−0.0613196 + 0.998118i 0.519531π0.519531\pi
648648 0 0
649649 −28.0536 −1.10120
650650 6.63566 0.260272
651651 0 0
652652 0.244863 0.00958958
653653 21.7301 0.850364 0.425182 0.905108i 0.360210π-0.360210\pi
0.425182 + 0.905108i 0.360210π0.360210\pi
654654 0 0
655655 −3.86834 −0.151149
656656 15.8065 0.617141
657657 0 0
658658 −60.6665 −2.36503
659659 12.2333 0.476541 0.238270 0.971199i 0.423420π-0.423420\pi
0.238270 + 0.971199i 0.423420π0.423420\pi
660660 0 0
661661 22.0000 0.855701 0.427850 0.903850i 0.359271π-0.359271\pi
0.427850 + 0.903850i 0.359271π0.359271\pi
662662 −8.86477 −0.344539
663663 0 0
664664 −30.8746 −1.19817
665665 9.28906 0.360214
666666 0 0
667667 −9.20608 −0.356461
668668 11.8040 0.456711
669669 0 0
670670 −20.6584 −0.798103
671671 0.893994 0.0345123
672672 0 0
673673 10.7900 0.415925 0.207963 0.978137i 0.433317π-0.433317\pi
0.207963 + 0.978137i 0.433317π0.433317\pi
674674 21.2843 0.819839
675675 0 0
676676 −36.4223 −1.40086
677677 −23.6721 −0.909793 −0.454896 0.890544i 0.650324π-0.650324\pi
−0.454896 + 0.890544i 0.650324π0.650324\pi
678678 0 0
679679 11.2388 0.431307
680680 23.1863 0.889153
681681 0 0
682682 46.6016 1.78447
683683 10.3583 0.396350 0.198175 0.980167i 0.436499π-0.436499\pi
0.198175 + 0.980167i 0.436499π0.436499\pi
684684 0 0
685685 20.6713 0.789810
686686 −47.8576 −1.82721
687687 0 0
688688 39.6462 1.51150
689689 −25.9702 −0.989386
690690 0 0
691691 13.5578 0.515763 0.257882 0.966177i 0.416976π-0.416976\pi
0.257882 + 0.966177i 0.416976π0.416976\pi
692692 −42.1086 −1.60073
693693 0 0
694694 −52.2610 −1.98380
695695 −12.5802 −0.477194
696696 0 0
697697 3.18952 0.120812
698698 89.3347 3.38137
699699 0 0
700700 −14.4122 −0.544729
701701 21.3774 0.807415 0.403708 0.914888i 0.367721π-0.367721\pi
0.403708 + 0.914888i 0.367721π0.367721\pi
702702 0 0
703703 18.6413 0.703069
704704 73.2948 2.76240
705705 0 0
706706 −80.5257 −3.03063
707707 33.7207 1.26820
708708 0 0
709709 30.3719 1.14064 0.570320 0.821422i 0.306819π-0.306819\pi
0.570320 + 0.821422i 0.306819π0.306819\pi
710710 0.0404462 0.00151792
711711 0 0
712712 −40.8850 −1.53223
713713 −5.10809 −0.191299
714714 0 0
715715 8.34420 0.312056
716716 62.8588 2.34914
717717 0 0
718718 −67.2642 −2.51028
719719 −8.41851 −0.313958 −0.156979 0.987602i 0.550175π-0.550175\pi
−0.156979 + 0.987602i 0.550175π0.550175\pi
720720 0 0
721721 −16.5929 −0.617951
722722 20.2766 0.754615
723723 0 0
724724 −91.8600 −3.41395
725725 −9.20608 −0.341905
726726 0 0
727727 19.7505 0.732507 0.366253 0.930515i 0.380640π-0.380640\pi
0.366253 + 0.930515i 0.380640π0.380640\pi
728728 −59.2374 −2.19548
729729 0 0
730730 −14.9125 −0.551938
731731 8.00000 0.295891
732732 0 0
733733 19.7280 0.728670 0.364335 0.931268i 0.381296π-0.381296\pi
0.364335 + 0.931268i 0.381296π0.381296\pi
734734 −42.6058 −1.57261
735735 0 0
736736 −17.7652 −0.654835
737737 −25.9775 −0.956892
738738 0 0
739739 −0.180969 −0.00665704 −0.00332852 0.999994i 0.501060π-0.501060\pi
−0.00332852 + 0.999994i 0.501060π0.501060\pi
740740 −28.9223 −1.06321
741741 0 0
742742 77.8723 2.85878
743743 −6.05023 −0.221961 −0.110981 0.993823i 0.535399π-0.535399\pi
−0.110981 + 0.993823i 0.535399π0.535399\pi
744744 0 0
745745 11.4850 0.420779
746746 −60.9500 −2.23154
747747 0 0
748748 47.0705 1.72107
749749 36.0770 1.31823
750750 0 0
751751 −21.5659 −0.786952 −0.393476 0.919335i 0.628728π-0.628728\pi
−0.393476 + 0.919335i 0.628728π0.628728\pi
752752 −107.631 −3.92490
753753 0 0
754754 −61.0885 −2.22471
755755 5.58667 0.203320
756756 0 0
757757 −24.7798 −0.900638 −0.450319 0.892868i 0.648690π-0.648690\pi
−0.450319 + 0.892868i 0.648690π0.648690\pi
758758 −27.6681 −1.00495
759759 0 0
760760 29.6964 1.07720
761761 −2.29916 −0.0833443 −0.0416722 0.999131i 0.513269π-0.513269\pi
−0.0416722 + 0.999131i 0.513269π0.513269\pi
762762 0 0
763763 46.9473 1.69961
764764 68.9629 2.49499
765765 0 0
766766 16.7393 0.604814
767767 20.4047 0.736770
768768 0 0
769769 −10.3692 −0.373923 −0.186961 0.982367i 0.559864π-0.559864\pi
−0.186961 + 0.982367i 0.559864π0.559864\pi
770770 −25.0203 −0.901669
771771 0 0
772772 −65.9187 −2.37247
773773 −12.7864 −0.459895 −0.229947 0.973203i 0.573855π-0.573855\pi
−0.229947 + 0.973203i 0.573855π0.573855\pi
774774 0 0
775775 −5.10809 −0.183488
776776 35.9297 1.28980
777777 0 0
778778 74.4528 2.66926
779779 4.08506 0.146362
780780 0 0
781781 0.0508602 0.00181992
782782 −7.12311 −0.254722
783783 0 0
784784 6.83361 0.244058
785785 −5.86563 −0.209353
786786 0 0
787787 −34.9239 −1.24490 −0.622451 0.782659i 0.713863π-0.713863\pi
−0.622451 + 0.782659i 0.713863π0.713863\pi
788788 −20.4183 −0.727372
789789 0 0
790790 −23.3693 −0.831443
791791 12.0138 0.427163
792792 0 0
793793 −0.650244 −0.0230908
794794 −2.88667 −0.102444
795795 0 0
796796 116.459 4.12776
797797 −4.87844 −0.172803 −0.0864016 0.996260i 0.527537π-0.527537\pi
−0.0864016 + 0.996260i 0.527537π0.527537\pi
798798 0 0
799799 −21.7183 −0.768339
800800 −17.7652 −0.628096
801801 0 0
802802 4.03483 0.142475
803803 −18.7522 −0.661751
804804 0 0
805805 2.74252 0.0966612
806806 −33.8956 −1.19392
807807 0 0
808808 107.803 3.79248
809809 −18.1498 −0.638112 −0.319056 0.947736i 0.603366π-0.603366\pi
−0.319056 + 0.947736i 0.603366π0.603366\pi
810810 0 0
811811 17.8019 0.625110 0.312555 0.949900i 0.398815π-0.398815\pi
0.312555 + 0.949900i 0.398815π0.398815\pi
812812 132.680 4.65614
813813 0 0
814814 −50.2107 −1.75989
815815 −0.0465955 −0.00163217
816816 0 0
817817 10.2462 0.358470
818818 −56.3952 −1.97181
819819 0 0
820820 −6.33805 −0.221334
821821 −32.9701 −1.15066 −0.575332 0.817920i 0.695127π-0.695127\pi
−0.575332 + 0.817920i 0.695127π0.695127\pi
822822 0 0
823823 −39.5819 −1.37974 −0.689869 0.723935i 0.742332π-0.742332\pi
−0.689869 + 0.723935i 0.742332π0.742332\pi
824824 −53.0462 −1.84795
825825 0 0
826826 −61.1839 −2.12886
827827 1.50849 0.0524554 0.0262277 0.999656i 0.491651π-0.491651\pi
0.0262277 + 0.999656i 0.491651π0.491651\pi
828828 0 0
829829 −7.66718 −0.266292 −0.133146 0.991096i 0.542508π-0.542508\pi
−0.133146 + 0.991096i 0.542508π0.542508\pi
830830 9.48504 0.329231
831831 0 0
832832 −53.3108 −1.84822
833833 1.37892 0.0477767
834834 0 0
835835 −2.24621 −0.0777333
836836 60.2868 2.08506
837837 0 0
838838 −50.5207 −1.74521
839839 8.53602 0.294696 0.147348 0.989085i 0.452926π-0.452926\pi
0.147348 + 0.989085i 0.452926π0.452926\pi
840840 0 0
841841 55.7519 1.92248
842842 −55.5305 −1.91371
843843 0 0
844844 25.2795 0.870155
845845 6.93087 0.238429
846846 0 0
847847 −1.29477 −0.0444889
848848 138.157 4.74432
849849 0 0
850850 −7.12311 −0.244321
851851 5.50369 0.188664
852852 0 0
853853 −48.0665 −1.64577 −0.822883 0.568211i 0.807636π-0.807636\pi
−0.822883 + 0.568211i 0.807636π0.807636\pi
854854 1.94977 0.0667199
855855 0 0
856856 115.335 3.94209
857857 −29.4313 −1.00535 −0.502677 0.864474i 0.667652π-0.667652\pi
−0.502677 + 0.864474i 0.667652π0.667652\pi
858858 0 0
859859 −33.5308 −1.14406 −0.572029 0.820234i 0.693843π-0.693843\pi
−0.572029 + 0.820234i 0.693843π0.693843\pi
860860 −15.8972 −0.542090
861861 0 0
862862 72.7670 2.47845
863863 −6.79483 −0.231299 −0.115649 0.993290i 0.536895π-0.536895\pi
−0.115649 + 0.993290i 0.536895π0.536895\pi
864864 0 0
865865 8.01293 0.272448
866866 68.1192 2.31478
867867 0 0
868868 73.6186 2.49878
869869 −29.3864 −0.996866
870870 0 0
871871 18.8946 0.640220
872872 150.087 5.08259
873873 0 0
874874 −9.12311 −0.308594
875875 2.74252 0.0927141
876876 0 0
877877 −21.9904 −0.742563 −0.371281 0.928520i 0.621082π-0.621082\pi
−0.371281 + 0.928520i 0.621082π0.621082\pi
878878 −92.6869 −3.12803
879879 0 0
880880 −44.3896 −1.49637
881881 −3.66242 −0.123390 −0.0616951 0.998095i 0.519651π-0.519651\pi
−0.0616951 + 0.998095i 0.519651π0.519651\pi
882882 0 0
883883 10.6640 0.358874 0.179437 0.983769i 0.442572π-0.442572\pi
0.179437 + 0.983769i 0.442572π0.442572\pi
884884 −34.2366 −1.15150
885885 0 0
886886 −80.3427 −2.69916
887887 −0.481294 −0.0161603 −0.00808014 0.999967i 0.502572π-0.502572\pi
−0.00808014 + 0.999967i 0.502572π0.502572\pi
888888 0 0
889889 50.6235 1.69786
890890 12.5604 0.421025
891891 0 0
892892 72.4228 2.42489
893893 −27.8163 −0.930837
894894 0 0
895895 −11.9615 −0.399830
896896 62.4107 2.08499
897897 0 0
898898 −7.20400 −0.240401
899899 47.0255 1.56839
900900 0 0
901901 27.8779 0.928748
902902 −11.0032 −0.366367
903903 0 0
904904 38.4074 1.27741
905905 17.4802 0.581063
906906 0 0
907907 −50.3078 −1.67044 −0.835222 0.549913i 0.814661π-0.814661\pi
−0.835222 + 0.549913i 0.814661π0.814661\pi
908908 −152.929 −5.07513
909909 0 0
910910 18.1984 0.603273
911911 39.5103 1.30903 0.654517 0.756047i 0.272872π-0.272872\pi
0.654517 + 0.756047i 0.272872π0.272872\pi
912912 0 0
913913 11.9272 0.394734
914914 83.2398 2.75333
915915 0 0
916916 −49.3297 −1.62990
917917 −10.6090 −0.350341
918918 0 0
919919 −10.0307 −0.330881 −0.165441 0.986220i 0.552905π-0.552905\pi
−0.165441 + 0.986220i 0.552905π0.552905\pi
920920 8.76763 0.289060
921921 0 0
922922 −71.6536 −2.35979
923923 −0.0369930 −0.00121764
924924 0 0
925925 5.50369 0.180960
926926 −71.9207 −2.36346
927927 0 0
928928 163.548 5.36873
929929 −5.83676 −0.191498 −0.0957490 0.995406i 0.530525π-0.530525\pi
−0.0957490 + 0.995406i 0.530525π0.530525\pi
930930 0 0
931931 1.76609 0.0578812
932932 66.5949 2.18139
933933 0 0
934934 94.9477 3.10678
935935 −8.95715 −0.292930
936936 0 0
937937 37.5175 1.22564 0.612822 0.790221i 0.290034π-0.290034\pi
0.612822 + 0.790221i 0.290034π0.290034\pi
938938 −56.6560 −1.84989
939939 0 0
940940 43.1576 1.40765
941941 −45.6189 −1.48713 −0.743566 0.668662i 0.766867π-0.766867\pi
−0.743566 + 0.668662i 0.766867π0.766867\pi
942942 0 0
943943 1.20608 0.0392754
944944 −108.549 −3.53297
945945 0 0
946946 −27.5984 −0.897302
947947 17.3357 0.563333 0.281667 0.959512i 0.409113π-0.409113\pi
0.281667 + 0.959512i 0.409113π0.409113\pi
948948 0 0
949949 13.6394 0.442752
950950 −9.12311 −0.295993
951951 0 0
952952 63.5888 2.06093
953953 −14.2706 −0.462269 −0.231135 0.972922i 0.574244π-0.574244\pi
−0.231135 + 0.972922i 0.574244π0.574244\pi
954954 0 0
955955 −13.1231 −0.424654
956956 −100.836 −3.26128
957957 0 0
958958 −105.237 −3.40007
959959 56.6915 1.83066
960960 0 0
961961 −4.90742 −0.158304
962962 36.5206 1.17747
963963 0 0
964964 88.1492 2.83909
965965 12.5438 0.403800
966966 0 0
967967 −4.07663 −0.131096 −0.0655478 0.997849i 0.520879π-0.520879\pi
−0.0655478 + 0.997849i 0.520879π0.520879\pi
968968 −4.13929 −0.133042
969969 0 0
970970 −11.0380 −0.354410
971971 20.2988 0.651419 0.325709 0.945470i 0.394397π-0.394397\pi
0.325709 + 0.945470i 0.394397π0.394397\pi
972972 0 0
973973 −34.5015 −1.10607
974974 −64.8706 −2.07859
975975 0 0
976976 3.45918 0.110726
977977 40.3782 1.29181 0.645907 0.763416i 0.276479π-0.276479\pi
0.645907 + 0.763416i 0.276479π0.276479\pi
978978 0 0
979979 15.7944 0.504792
980980 −2.74012 −0.0875299
981981 0 0
982982 15.0851 0.481386
983983 53.1628 1.69563 0.847815 0.530292i 0.177918π-0.177918\pi
0.847815 + 0.530292i 0.177918π0.177918\pi
984984 0 0
985985 3.88544 0.123801
986986 65.5759 2.08836
987987 0 0
988988 −43.8494 −1.39504
989989 3.02511 0.0961930
990990 0 0
991991 36.6746 1.16501 0.582503 0.812829i 0.302073π-0.302073\pi
0.582503 + 0.812829i 0.302073π0.302073\pi
992992 90.7464 2.88120
993993 0 0
994994 0.110925 0.00351831
995995 −22.1612 −0.702556
996996 0 0
997997 −11.1189 −0.352140 −0.176070 0.984378i 0.556339π-0.556339\pi
−0.176070 + 0.984378i 0.556339π0.556339\pi
998998 −25.6779 −0.812819
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.o.1.1 4
3.2 odd 2 115.2.a.c.1.4 4
5.4 even 2 5175.2.a.bx.1.4 4
12.11 even 2 1840.2.a.u.1.4 4
15.2 even 4 575.2.b.e.24.8 8
15.8 even 4 575.2.b.e.24.1 8
15.14 odd 2 575.2.a.h.1.1 4
21.20 even 2 5635.2.a.v.1.4 4
24.5 odd 2 7360.2.a.cj.1.3 4
24.11 even 2 7360.2.a.cg.1.2 4
60.59 even 2 9200.2.a.cl.1.1 4
69.68 even 2 2645.2.a.m.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.a.c.1.4 4 3.2 odd 2
575.2.a.h.1.1 4 15.14 odd 2
575.2.b.e.24.1 8 15.8 even 4
575.2.b.e.24.8 8 15.2 even 4
1035.2.a.o.1.1 4 1.1 even 1 trivial
1840.2.a.u.1.4 4 12.11 even 2
2645.2.a.m.1.4 4 69.68 even 2
5175.2.a.bx.1.4 4 5.4 even 2
5635.2.a.v.1.4 4 21.20 even 2
7360.2.a.cg.1.2 4 24.11 even 2
7360.2.a.cj.1.3 4 24.5 odd 2
9200.2.a.cl.1.1 4 60.59 even 2