L(s) = 1 | + 0.481i·3-s + (1.67 + 1.48i)5-s + 0.806i·7-s + 2.76·9-s + 3.67·11-s − i·13-s + (−0.712 + 0.806i)15-s + 1.35i·17-s − 1.67·19-s − 0.387·21-s − 6.48i·23-s + (0.612 + 4.96i)25-s + 2.77i·27-s − 2.41·29-s + 5.28·31-s + ⋯ |
L(s) = 1 | + 0.277i·3-s + (0.749 + 0.662i)5-s + 0.304i·7-s + 0.922·9-s + 1.10·11-s − 0.277i·13-s + (−0.184 + 0.208i)15-s + 0.327i·17-s − 0.384·19-s − 0.0846·21-s − 1.35i·23-s + (0.122 + 0.992i)25-s + 0.534i·27-s − 0.449·29-s + 0.949·31-s + ⋯ |
Λ(s)=(=(1040s/2ΓC(s)L(s)(0.662−0.749i)Λ(2−s)
Λ(s)=(=(1040s/2ΓC(s+1/2)L(s)(0.662−0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
1040
= 24⋅5⋅13
|
Sign: |
0.662−0.749i
|
Analytic conductor: |
8.30444 |
Root analytic conductor: |
2.88174 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1040(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1040, ( :1/2), 0.662−0.749i)
|
Particular Values
L(1) |
≈ |
2.079475258 |
L(21) |
≈ |
2.079475258 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.67−1.48i)T |
| 13 | 1+iT |
good | 3 | 1−0.481iT−3T2 |
| 7 | 1−0.806iT−7T2 |
| 11 | 1−3.67T+11T2 |
| 17 | 1−1.35iT−17T2 |
| 19 | 1+1.67T+19T2 |
| 23 | 1+6.48iT−23T2 |
| 29 | 1+2.41T+29T2 |
| 31 | 1−5.28T+31T2 |
| 37 | 1+3.76iT−37T2 |
| 41 | 1+8.31T+41T2 |
| 43 | 1−6.79iT−43T2 |
| 47 | 1−3.19iT−47T2 |
| 53 | 1−5.73iT−53T2 |
| 59 | 1−5.98T+59T2 |
| 61 | 1+1.76T+61T2 |
| 67 | 1−9.89iT−67T2 |
| 71 | 1+8.56T+71T2 |
| 73 | 1+11.7iT−73T2 |
| 79 | 1+2.26T+79T2 |
| 83 | 1+3.84iT−83T2 |
| 89 | 1+2.77T+89T2 |
| 97 | 1−1.87iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13379277316794797665365267622, −9.297130199821374525774455545737, −8.579890947106659067012014864418, −7.36942566566821325215453980137, −6.56149523530080531488241383977, −5.96455636262384026404962775689, −4.73193693977314403066290682334, −3.84251925168766387061947782554, −2.64292719887928130446488022466, −1.47100908560065327134911604304,
1.13469122716665794176341484181, 1.99938546319313035491945104617, 3.67265261458423998500899151547, 4.54617287573423746095092440702, 5.51831730946595173743683503384, 6.56600789389474782002588093880, 7.11795810908392735664344655447, 8.241067785365236938699942732725, 9.098969085996931658112988970508, 9.764433887185709165679191095262