Properties

Label 2-1040-5.4-c1-0-18
Degree $2$
Conductor $1040$
Sign $0.662 - 0.749i$
Analytic cond. $8.30444$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.481i·3-s + (1.67 + 1.48i)5-s + 0.806i·7-s + 2.76·9-s + 3.67·11-s i·13-s + (−0.712 + 0.806i)15-s + 1.35i·17-s − 1.67·19-s − 0.387·21-s − 6.48i·23-s + (0.612 + 4.96i)25-s + 2.77i·27-s − 2.41·29-s + 5.28·31-s + ⋯
L(s)  = 1  + 0.277i·3-s + (0.749 + 0.662i)5-s + 0.304i·7-s + 0.922·9-s + 1.10·11-s − 0.277i·13-s + (−0.184 + 0.208i)15-s + 0.327i·17-s − 0.384·19-s − 0.0846·21-s − 1.35i·23-s + (0.122 + 0.992i)25-s + 0.534i·27-s − 0.449·29-s + 0.949·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1040\)    =    \(2^{4} \cdot 5 \cdot 13\)
Sign: $0.662 - 0.749i$
Analytic conductor: \(8.30444\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1040} (209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1040,\ (\ :1/2),\ 0.662 - 0.749i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.079475258\)
\(L(\frac12)\) \(\approx\) \(2.079475258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-1.67 - 1.48i)T \)
13 \( 1 + iT \)
good3 \( 1 - 0.481iT - 3T^{2} \)
7 \( 1 - 0.806iT - 7T^{2} \)
11 \( 1 - 3.67T + 11T^{2} \)
17 \( 1 - 1.35iT - 17T^{2} \)
19 \( 1 + 1.67T + 19T^{2} \)
23 \( 1 + 6.48iT - 23T^{2} \)
29 \( 1 + 2.41T + 29T^{2} \)
31 \( 1 - 5.28T + 31T^{2} \)
37 \( 1 + 3.76iT - 37T^{2} \)
41 \( 1 + 8.31T + 41T^{2} \)
43 \( 1 - 6.79iT - 43T^{2} \)
47 \( 1 - 3.19iT - 47T^{2} \)
53 \( 1 - 5.73iT - 53T^{2} \)
59 \( 1 - 5.98T + 59T^{2} \)
61 \( 1 + 1.76T + 61T^{2} \)
67 \( 1 - 9.89iT - 67T^{2} \)
71 \( 1 + 8.56T + 71T^{2} \)
73 \( 1 + 11.7iT - 73T^{2} \)
79 \( 1 + 2.26T + 79T^{2} \)
83 \( 1 + 3.84iT - 83T^{2} \)
89 \( 1 + 2.77T + 89T^{2} \)
97 \( 1 - 1.87iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13379277316794797665365267622, −9.297130199821374525774455545737, −8.579890947106659067012014864418, −7.36942566566821325215453980137, −6.56149523530080531488241383977, −5.96455636262384026404962775689, −4.73193693977314403066290682334, −3.84251925168766387061947782554, −2.64292719887928130446488022466, −1.47100908560065327134911604304, 1.13469122716665794176341484181, 1.99938546319313035491945104617, 3.67265261458423998500899151547, 4.54617287573423746095092440702, 5.51831730946595173743683503384, 6.56600789389474782002588093880, 7.11795810908392735664344655447, 8.241067785365236938699942732725, 9.098969085996931658112988970508, 9.764433887185709165679191095262

Graph of the $Z$-function along the critical line