Properties

Label 1040.2.d.c.209.4
Level $1040$
Weight $2$
Character 1040.209
Analytic conductor $8.304$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(209,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.209");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 1040.209
Dual form 1040.2.d.c.209.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.481194i q^{3} +(1.67513 + 1.48119i) q^{5} +0.806063i q^{7} +2.76845 q^{9} +3.67513 q^{11} -1.00000i q^{13} +(-0.712742 + 0.806063i) q^{15} +1.35026i q^{17} -1.67513 q^{19} -0.387873 q^{21} -6.48119i q^{23} +(0.612127 + 4.96239i) q^{25} +2.77575i q^{27} -2.41819 q^{29} +5.28726 q^{31} +1.76845i q^{33} +(-1.19394 + 1.35026i) q^{35} -3.76845i q^{37} +0.481194 q^{39} -8.31265 q^{41} +6.79384i q^{43} +(4.63752 + 4.10062i) q^{45} +3.19394i q^{47} +6.35026 q^{49} -0.649738 q^{51} +5.73813i q^{53} +(6.15633 + 5.44358i) q^{55} -0.806063i q^{57} +5.98778 q^{59} -1.76845 q^{61} +2.23155i q^{63} +(1.48119 - 1.67513i) q^{65} +9.89446i q^{67} +3.11871 q^{69} -8.56230 q^{71} -11.7685i q^{73} +(-2.38787 + 0.294552i) q^{75} +2.96239i q^{77} -2.26187 q^{79} +6.96968 q^{81} -3.84367i q^{83} +(-2.00000 + 2.26187i) q^{85} -1.16362i q^{87} -2.77575 q^{89} +0.806063 q^{91} +2.54420i q^{93} +(-2.80606 - 2.48119i) q^{95} +1.87399i q^{97} +10.1744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} + 12 q^{11} - 16 q^{15} - 4 q^{21} + 2 q^{25} - 12 q^{29} + 20 q^{31} - 8 q^{35} - 8 q^{39} - 8 q^{41} - 4 q^{45} + 18 q^{49} - 24 q^{51} + 16 q^{55} - 16 q^{59} + 12 q^{61} - 2 q^{65} - 24 q^{69}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.481194i 0.277818i 0.990305 + 0.138909i \(0.0443595\pi\)
−0.990305 + 0.138909i \(0.955641\pi\)
\(4\) 0 0
\(5\) 1.67513 + 1.48119i 0.749141 + 0.662410i
\(6\) 0 0
\(7\) 0.806063i 0.304663i 0.988329 + 0.152332i \(0.0486782\pi\)
−0.988329 + 0.152332i \(0.951322\pi\)
\(8\) 0 0
\(9\) 2.76845 0.922817
\(10\) 0 0
\(11\) 3.67513 1.10809 0.554047 0.832486i \(-0.313083\pi\)
0.554047 + 0.832486i \(0.313083\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −0.712742 + 0.806063i −0.184029 + 0.208125i
\(16\) 0 0
\(17\) 1.35026i 0.327487i 0.986503 + 0.163743i \(0.0523569\pi\)
−0.986503 + 0.163743i \(0.947643\pi\)
\(18\) 0 0
\(19\) −1.67513 −0.384301 −0.192151 0.981365i \(-0.561546\pi\)
−0.192151 + 0.981365i \(0.561546\pi\)
\(20\) 0 0
\(21\) −0.387873 −0.0846409
\(22\) 0 0
\(23\) 6.48119i 1.35142i −0.737166 0.675711i \(-0.763837\pi\)
0.737166 0.675711i \(-0.236163\pi\)
\(24\) 0 0
\(25\) 0.612127 + 4.96239i 0.122425 + 0.992478i
\(26\) 0 0
\(27\) 2.77575i 0.534193i
\(28\) 0 0
\(29\) −2.41819 −0.449047 −0.224523 0.974469i \(-0.572083\pi\)
−0.224523 + 0.974469i \(0.572083\pi\)
\(30\) 0 0
\(31\) 5.28726 0.949620 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(32\) 0 0
\(33\) 1.76845i 0.307848i
\(34\) 0 0
\(35\) −1.19394 + 1.35026i −0.201812 + 0.228236i
\(36\) 0 0
\(37\) 3.76845i 0.619530i −0.950813 0.309765i \(-0.899750\pi\)
0.950813 0.309765i \(-0.100250\pi\)
\(38\) 0 0
\(39\) 0.481194 0.0770528
\(40\) 0 0
\(41\) −8.31265 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(42\) 0 0
\(43\) 6.79384i 1.03605i 0.855365 + 0.518026i \(0.173333\pi\)
−0.855365 + 0.518026i \(0.826667\pi\)
\(44\) 0 0
\(45\) 4.63752 + 4.10062i 0.691321 + 0.611284i
\(46\) 0 0
\(47\) 3.19394i 0.465884i 0.972491 + 0.232942i \(0.0748352\pi\)
−0.972491 + 0.232942i \(0.925165\pi\)
\(48\) 0 0
\(49\) 6.35026 0.907180
\(50\) 0 0
\(51\) −0.649738 −0.0909816
\(52\) 0 0
\(53\) 5.73813i 0.788193i 0.919069 + 0.394097i \(0.128943\pi\)
−0.919069 + 0.394097i \(0.871057\pi\)
\(54\) 0 0
\(55\) 6.15633 + 5.44358i 0.830119 + 0.734013i
\(56\) 0 0
\(57\) 0.806063i 0.106766i
\(58\) 0 0
\(59\) 5.98778 0.779543 0.389771 0.920912i \(-0.372554\pi\)
0.389771 + 0.920912i \(0.372554\pi\)
\(60\) 0 0
\(61\) −1.76845 −0.226427 −0.113214 0.993571i \(-0.536114\pi\)
−0.113214 + 0.993571i \(0.536114\pi\)
\(62\) 0 0
\(63\) 2.23155i 0.281149i
\(64\) 0 0
\(65\) 1.48119 1.67513i 0.183720 0.207774i
\(66\) 0 0
\(67\) 9.89446i 1.20880i 0.796681 + 0.604400i \(0.206587\pi\)
−0.796681 + 0.604400i \(0.793413\pi\)
\(68\) 0 0
\(69\) 3.11871 0.375449
\(70\) 0 0
\(71\) −8.56230 −1.01616 −0.508079 0.861311i \(-0.669644\pi\)
−0.508079 + 0.861311i \(0.669644\pi\)
\(72\) 0 0
\(73\) 11.7685i 1.37739i −0.725050 0.688697i \(-0.758183\pi\)
0.725050 0.688697i \(-0.241817\pi\)
\(74\) 0 0
\(75\) −2.38787 + 0.294552i −0.275728 + 0.0340119i
\(76\) 0 0
\(77\) 2.96239i 0.337596i
\(78\) 0 0
\(79\) −2.26187 −0.254480 −0.127240 0.991872i \(-0.540612\pi\)
−0.127240 + 0.991872i \(0.540612\pi\)
\(80\) 0 0
\(81\) 6.96968 0.774409
\(82\) 0 0
\(83\) 3.84367i 0.421898i −0.977497 0.210949i \(-0.932345\pi\)
0.977497 0.210949i \(-0.0676554\pi\)
\(84\) 0 0
\(85\) −2.00000 + 2.26187i −0.216930 + 0.245334i
\(86\) 0 0
\(87\) 1.16362i 0.124753i
\(88\) 0 0
\(89\) −2.77575 −0.294229 −0.147114 0.989120i \(-0.546999\pi\)
−0.147114 + 0.989120i \(0.546999\pi\)
\(90\) 0 0
\(91\) 0.806063 0.0844984
\(92\) 0 0
\(93\) 2.54420i 0.263821i
\(94\) 0 0
\(95\) −2.80606 2.48119i −0.287896 0.254565i
\(96\) 0 0
\(97\) 1.87399i 0.190275i 0.995464 + 0.0951375i \(0.0303291\pi\)
−0.995464 + 0.0951375i \(0.969671\pi\)
\(98\) 0 0
\(99\) 10.1744 1.02257
\(100\) 0 0
\(101\) 10.4993 1.04472 0.522359 0.852725i \(-0.325052\pi\)
0.522359 + 0.852725i \(0.325052\pi\)
\(102\) 0 0
\(103\) 15.3684i 1.51429i −0.653247 0.757145i \(-0.726594\pi\)
0.653247 0.757145i \(-0.273406\pi\)
\(104\) 0 0
\(105\) −0.649738 0.574515i −0.0634080 0.0560670i
\(106\) 0 0
\(107\) 11.1309i 1.07607i 0.842923 + 0.538034i \(0.180833\pi\)
−0.842923 + 0.538034i \(0.819167\pi\)
\(108\) 0 0
\(109\) −9.58769 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(110\) 0 0
\(111\) 1.81336 0.172116
\(112\) 0 0
\(113\) 0.574515i 0.0540459i 0.999635 + 0.0270229i \(0.00860271\pi\)
−0.999635 + 0.0270229i \(0.991397\pi\)
\(114\) 0 0
\(115\) 9.59991 10.8568i 0.895196 1.01241i
\(116\) 0 0
\(117\) 2.76845i 0.255943i
\(118\) 0 0
\(119\) −1.08840 −0.0997732
\(120\) 0 0
\(121\) 2.50659 0.227872
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) −6.32487 + 9.21933i −0.565713 + 0.824602i
\(126\) 0 0
\(127\) 4.29455i 0.381080i −0.981679 0.190540i \(-0.938976\pi\)
0.981679 0.190540i \(-0.0610239\pi\)
\(128\) 0 0
\(129\) −3.26916 −0.287833
\(130\) 0 0
\(131\) 0.836381 0.0730749 0.0365375 0.999332i \(-0.488367\pi\)
0.0365375 + 0.999332i \(0.488367\pi\)
\(132\) 0 0
\(133\) 1.35026i 0.117083i
\(134\) 0 0
\(135\) −4.11142 + 4.64974i −0.353855 + 0.400186i
\(136\) 0 0
\(137\) 14.9380i 1.27624i 0.769939 + 0.638118i \(0.220287\pi\)
−0.769939 + 0.638118i \(0.779713\pi\)
\(138\) 0 0
\(139\) −8.43866 −0.715758 −0.357879 0.933768i \(-0.616500\pi\)
−0.357879 + 0.933768i \(0.616500\pi\)
\(140\) 0 0
\(141\) −1.53690 −0.129431
\(142\) 0 0
\(143\) 3.67513i 0.307330i
\(144\) 0 0
\(145\) −4.05079 3.58181i −0.336399 0.297453i
\(146\) 0 0
\(147\) 3.05571i 0.252031i
\(148\) 0 0
\(149\) 11.3503 0.929850 0.464925 0.885350i \(-0.346081\pi\)
0.464925 + 0.885350i \(0.346081\pi\)
\(150\) 0 0
\(151\) −13.9878 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(152\) 0 0
\(153\) 3.73813i 0.302210i
\(154\) 0 0
\(155\) 8.85685 + 7.83146i 0.711399 + 0.629038i
\(156\) 0 0
\(157\) 2.77575i 0.221529i −0.993847 0.110764i \(-0.964670\pi\)
0.993847 0.110764i \(-0.0353299\pi\)
\(158\) 0 0
\(159\) −2.76116 −0.218974
\(160\) 0 0
\(161\) 5.22425 0.411729
\(162\) 0 0
\(163\) 2.23155i 0.174788i −0.996174 0.0873942i \(-0.972146\pi\)
0.996174 0.0873942i \(-0.0278540\pi\)
\(164\) 0 0
\(165\) −2.61942 + 2.96239i −0.203922 + 0.230622i
\(166\) 0 0
\(167\) 15.6932i 1.21438i −0.794557 0.607189i \(-0.792297\pi\)
0.794557 0.607189i \(-0.207703\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −4.63752 −0.354640
\(172\) 0 0
\(173\) 25.5877i 1.94540i −0.232075 0.972698i \(-0.574551\pi\)
0.232075 0.972698i \(-0.425449\pi\)
\(174\) 0 0
\(175\) −4.00000 + 0.493413i −0.302372 + 0.0372985i
\(176\) 0 0
\(177\) 2.88129i 0.216571i
\(178\) 0 0
\(179\) 12.1260 0.906340 0.453170 0.891424i \(-0.350293\pi\)
0.453170 + 0.891424i \(0.350293\pi\)
\(180\) 0 0
\(181\) −2.73084 −0.202982 −0.101491 0.994836i \(-0.532361\pi\)
−0.101491 + 0.994836i \(0.532361\pi\)
\(182\) 0 0
\(183\) 0.850969i 0.0629054i
\(184\) 0 0
\(185\) 5.58181 6.31265i 0.410383 0.464115i
\(186\) 0 0
\(187\) 4.96239i 0.362886i
\(188\) 0 0
\(189\) −2.23743 −0.162749
\(190\) 0 0
\(191\) −20.6253 −1.49239 −0.746197 0.665725i \(-0.768122\pi\)
−0.746197 + 0.665725i \(0.768122\pi\)
\(192\) 0 0
\(193\) 21.7889i 1.56840i −0.620508 0.784200i \(-0.713073\pi\)
0.620508 0.784200i \(-0.286927\pi\)
\(194\) 0 0
\(195\) 0.806063 + 0.712742i 0.0577234 + 0.0510405i
\(196\) 0 0
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) −16.7513 −1.18747 −0.593734 0.804661i \(-0.702347\pi\)
−0.593734 + 0.804661i \(0.702347\pi\)
\(200\) 0 0
\(201\) −4.76116 −0.335826
\(202\) 0 0
\(203\) 1.94921i 0.136808i
\(204\) 0 0
\(205\) −13.9248 12.3127i −0.972549 0.859953i
\(206\) 0 0
\(207\) 17.9429i 1.24712i
\(208\) 0 0
\(209\) −6.15633 −0.425842
\(210\) 0 0
\(211\) 4.90175 0.337451 0.168725 0.985663i \(-0.446035\pi\)
0.168725 + 0.985663i \(0.446035\pi\)
\(212\) 0 0
\(213\) 4.12013i 0.282307i
\(214\) 0 0
\(215\) −10.0630 + 11.3806i −0.686291 + 0.776149i
\(216\) 0 0
\(217\) 4.26187i 0.289314i
\(218\) 0 0
\(219\) 5.66291 0.382664
\(220\) 0 0
\(221\) 1.35026 0.0908284
\(222\) 0 0
\(223\) 24.9076i 1.66794i −0.551811 0.833969i \(-0.686063\pi\)
0.551811 0.833969i \(-0.313937\pi\)
\(224\) 0 0
\(225\) 1.69464 + 13.7381i 0.112976 + 0.915876i
\(226\) 0 0
\(227\) 9.95509i 0.660743i 0.943851 + 0.330371i \(0.107174\pi\)
−0.943851 + 0.330371i \(0.892826\pi\)
\(228\) 0 0
\(229\) −5.35026 −0.353555 −0.176778 0.984251i \(-0.556567\pi\)
−0.176778 + 0.984251i \(0.556567\pi\)
\(230\) 0 0
\(231\) −1.42548 −0.0937900
\(232\) 0 0
\(233\) 10.7612i 0.704987i −0.935814 0.352493i \(-0.885334\pi\)
0.935814 0.352493i \(-0.114666\pi\)
\(234\) 0 0
\(235\) −4.73084 + 5.35026i −0.308606 + 0.349013i
\(236\) 0 0
\(237\) 1.08840i 0.0706990i
\(238\) 0 0
\(239\) −11.8618 −0.767274 −0.383637 0.923484i \(-0.625329\pi\)
−0.383637 + 0.923484i \(0.625329\pi\)
\(240\) 0 0
\(241\) −28.6253 −1.84392 −0.921959 0.387288i \(-0.873412\pi\)
−0.921959 + 0.387288i \(0.873412\pi\)
\(242\) 0 0
\(243\) 11.6810i 0.749337i
\(244\) 0 0
\(245\) 10.6375 + 9.40597i 0.679606 + 0.600925i
\(246\) 0 0
\(247\) 1.67513i 0.106586i
\(248\) 0 0
\(249\) 1.84955 0.117211
\(250\) 0 0
\(251\) 19.3865 1.22366 0.611831 0.790988i \(-0.290433\pi\)
0.611831 + 0.790988i \(0.290433\pi\)
\(252\) 0 0
\(253\) 23.8192i 1.49750i
\(254\) 0 0
\(255\) −1.08840 0.962389i −0.0681580 0.0602671i
\(256\) 0 0
\(257\) 22.8627i 1.42614i −0.701094 0.713069i \(-0.747305\pi\)
0.701094 0.713069i \(-0.252695\pi\)
\(258\) 0 0
\(259\) 3.03761 0.188748
\(260\) 0 0
\(261\) −6.69464 −0.414388
\(262\) 0 0
\(263\) 21.8822i 1.34932i −0.738130 0.674658i \(-0.764291\pi\)
0.738130 0.674658i \(-0.235709\pi\)
\(264\) 0 0
\(265\) −8.49929 + 9.61213i −0.522107 + 0.590468i
\(266\) 0 0
\(267\) 1.33567i 0.0817419i
\(268\) 0 0
\(269\) −22.7513 −1.38717 −0.693586 0.720374i \(-0.743970\pi\)
−0.693586 + 0.720374i \(0.743970\pi\)
\(270\) 0 0
\(271\) −0.123638 −0.00751049 −0.00375525 0.999993i \(-0.501195\pi\)
−0.00375525 + 0.999993i \(0.501195\pi\)
\(272\) 0 0
\(273\) 0.387873i 0.0234751i
\(274\) 0 0
\(275\) 2.24965 + 18.2374i 0.135659 + 1.09976i
\(276\) 0 0
\(277\) 15.3503i 0.922308i 0.887320 + 0.461154i \(0.152564\pi\)
−0.887320 + 0.461154i \(0.847436\pi\)
\(278\) 0 0
\(279\) 14.6375 0.876325
\(280\) 0 0
\(281\) 13.9248 0.830683 0.415341 0.909666i \(-0.363662\pi\)
0.415341 + 0.909666i \(0.363662\pi\)
\(282\) 0 0
\(283\) 20.3815i 1.21156i −0.795634 0.605778i \(-0.792862\pi\)
0.795634 0.605778i \(-0.207138\pi\)
\(284\) 0 0
\(285\) 1.19394 1.35026i 0.0707227 0.0799826i
\(286\) 0 0
\(287\) 6.70052i 0.395519i
\(288\) 0 0
\(289\) 15.1768 0.892753
\(290\) 0 0
\(291\) −0.901754 −0.0528618
\(292\) 0 0
\(293\) 5.38058i 0.314337i 0.987572 + 0.157168i \(0.0502365\pi\)
−0.987572 + 0.157168i \(0.949763\pi\)
\(294\) 0 0
\(295\) 10.0303 + 8.86907i 0.583988 + 0.516377i
\(296\) 0 0
\(297\) 10.2012i 0.591935i
\(298\) 0 0
\(299\) −6.48119 −0.374817
\(300\) 0 0
\(301\) −5.47627 −0.315647
\(302\) 0 0
\(303\) 5.05220i 0.290241i
\(304\) 0 0
\(305\) −2.96239 2.61942i −0.169626 0.149988i
\(306\) 0 0
\(307\) 19.1695i 1.09406i −0.837113 0.547031i \(-0.815758\pi\)
0.837113 0.547031i \(-0.184242\pi\)
\(308\) 0 0
\(309\) 7.39517 0.420696
\(310\) 0 0
\(311\) 25.2506 1.43183 0.715915 0.698187i \(-0.246010\pi\)
0.715915 + 0.698187i \(0.246010\pi\)
\(312\) 0 0
\(313\) 2.81194i 0.158940i 0.996837 + 0.0794702i \(0.0253229\pi\)
−0.996837 + 0.0794702i \(0.974677\pi\)
\(314\) 0 0
\(315\) −3.30536 + 3.73813i −0.186236 + 0.210620i
\(316\) 0 0
\(317\) 23.7685i 1.33497i 0.744624 + 0.667485i \(0.232629\pi\)
−0.744624 + 0.667485i \(0.767371\pi\)
\(318\) 0 0
\(319\) −8.88717 −0.497586
\(320\) 0 0
\(321\) −5.35614 −0.298951
\(322\) 0 0
\(323\) 2.26187i 0.125854i
\(324\) 0 0
\(325\) 4.96239 0.612127i 0.275264 0.0339547i
\(326\) 0 0
\(327\) 4.61354i 0.255129i
\(328\) 0 0
\(329\) −2.57452 −0.141938
\(330\) 0 0
\(331\) 11.8011 0.648649 0.324325 0.945946i \(-0.394863\pi\)
0.324325 + 0.945946i \(0.394863\pi\)
\(332\) 0 0
\(333\) 10.4328i 0.571713i
\(334\) 0 0
\(335\) −14.6556 + 16.5745i −0.800722 + 0.905563i
\(336\) 0 0
\(337\) 16.1114i 0.877645i −0.898574 0.438822i \(-0.855396\pi\)
0.898574 0.438822i \(-0.144604\pi\)
\(338\) 0 0
\(339\) −0.276454 −0.0150149
\(340\) 0 0
\(341\) 19.4314 1.05227
\(342\) 0 0
\(343\) 10.7612i 0.581048i
\(344\) 0 0
\(345\) 5.22425 + 4.61942i 0.281264 + 0.248701i
\(346\) 0 0
\(347\) 27.4944i 1.47598i 0.674814 + 0.737988i \(0.264224\pi\)
−0.674814 + 0.737988i \(0.735776\pi\)
\(348\) 0 0
\(349\) 17.6023 0.942228 0.471114 0.882072i \(-0.343852\pi\)
0.471114 + 0.882072i \(0.343852\pi\)
\(350\) 0 0
\(351\) 2.77575 0.148158
\(352\) 0 0
\(353\) 15.7685i 0.839270i 0.907693 + 0.419635i \(0.137842\pi\)
−0.907693 + 0.419635i \(0.862158\pi\)
\(354\) 0 0
\(355\) −14.3430 12.6824i −0.761246 0.673113i
\(356\) 0 0
\(357\) 0.523730i 0.0277187i
\(358\) 0 0
\(359\) −14.8242 −0.782389 −0.391195 0.920308i \(-0.627938\pi\)
−0.391195 + 0.920308i \(0.627938\pi\)
\(360\) 0 0
\(361\) −16.1939 −0.852312
\(362\) 0 0
\(363\) 1.20616i 0.0633067i
\(364\) 0 0
\(365\) 17.4314 19.7137i 0.912399 1.03186i
\(366\) 0 0
\(367\) 27.0313i 1.41102i −0.708700 0.705510i \(-0.750718\pi\)
0.708700 0.705510i \(-0.249282\pi\)
\(368\) 0 0
\(369\) −23.0132 −1.19802
\(370\) 0 0
\(371\) −4.62530 −0.240134
\(372\) 0 0
\(373\) 12.9525i 0.670657i 0.942101 + 0.335329i \(0.108847\pi\)
−0.942101 + 0.335329i \(0.891153\pi\)
\(374\) 0 0
\(375\) −4.43629 3.04349i −0.229089 0.157165i
\(376\) 0 0
\(377\) 2.41819i 0.124543i
\(378\) 0 0
\(379\) −30.2858 −1.55568 −0.777840 0.628463i \(-0.783684\pi\)
−0.777840 + 0.628463i \(0.783684\pi\)
\(380\) 0 0
\(381\) 2.06651 0.105871
\(382\) 0 0
\(383\) 21.0943i 1.07787i 0.842348 + 0.538934i \(0.181173\pi\)
−0.842348 + 0.538934i \(0.818827\pi\)
\(384\) 0 0
\(385\) −4.38787 + 4.96239i −0.223627 + 0.252907i
\(386\) 0 0
\(387\) 18.8084i 0.956086i
\(388\) 0 0
\(389\) 6.77575 0.343544 0.171772 0.985137i \(-0.445051\pi\)
0.171772 + 0.985137i \(0.445051\pi\)
\(390\) 0 0
\(391\) 8.75131 0.442573
\(392\) 0 0
\(393\) 0.402462i 0.0203015i
\(394\) 0 0
\(395\) −3.78892 3.35026i −0.190641 0.168570i
\(396\) 0 0
\(397\) 10.4690i 0.525423i −0.964874 0.262711i \(-0.915383\pi\)
0.964874 0.262711i \(-0.0846167\pi\)
\(398\) 0 0
\(399\) 0.649738 0.0325276
\(400\) 0 0
\(401\) 5.01317 0.250346 0.125173 0.992135i \(-0.460051\pi\)
0.125173 + 0.992135i \(0.460051\pi\)
\(402\) 0 0
\(403\) 5.28726i 0.263377i
\(404\) 0 0
\(405\) 11.6751 + 10.3235i 0.580142 + 0.512977i
\(406\) 0 0
\(407\) 13.8496i 0.686497i
\(408\) 0 0
\(409\) 14.3879 0.711435 0.355717 0.934594i \(-0.384237\pi\)
0.355717 + 0.934594i \(0.384237\pi\)
\(410\) 0 0
\(411\) −7.18806 −0.354561
\(412\) 0 0
\(413\) 4.82653i 0.237498i
\(414\) 0 0
\(415\) 5.69323 6.43866i 0.279470 0.316061i
\(416\) 0 0
\(417\) 4.06063i 0.198850i
\(418\) 0 0
\(419\) 17.4617 0.853059 0.426529 0.904474i \(-0.359736\pi\)
0.426529 + 0.904474i \(0.359736\pi\)
\(420\) 0 0
\(421\) 2.88717 0.140712 0.0703559 0.997522i \(-0.477586\pi\)
0.0703559 + 0.997522i \(0.477586\pi\)
\(422\) 0 0
\(423\) 8.84226i 0.429925i
\(424\) 0 0
\(425\) −6.70052 + 0.826531i −0.325023 + 0.0400927i
\(426\) 0 0
\(427\) 1.42548i 0.0689840i
\(428\) 0 0
\(429\) 1.76845 0.0853817
\(430\) 0 0
\(431\) −0.889535 −0.0428474 −0.0214237 0.999770i \(-0.506820\pi\)
−0.0214237 + 0.999770i \(0.506820\pi\)
\(432\) 0 0
\(433\) 25.2506i 1.21347i −0.794906 0.606733i \(-0.792480\pi\)
0.794906 0.606733i \(-0.207520\pi\)
\(434\) 0 0
\(435\) 1.72355 1.94921i 0.0826377 0.0934577i
\(436\) 0 0
\(437\) 10.8568i 0.519354i
\(438\) 0 0
\(439\) 28.8119 1.37512 0.687560 0.726128i \(-0.258682\pi\)
0.687560 + 0.726128i \(0.258682\pi\)
\(440\) 0 0
\(441\) 17.5804 0.837162
\(442\) 0 0
\(443\) 36.9805i 1.75700i −0.477746 0.878498i \(-0.658546\pi\)
0.477746 0.878498i \(-0.341454\pi\)
\(444\) 0 0
\(445\) −4.64974 4.11142i −0.220419 0.194900i
\(446\) 0 0
\(447\) 5.46168i 0.258329i
\(448\) 0 0
\(449\) 12.6859 0.598686 0.299343 0.954146i \(-0.403232\pi\)
0.299343 + 0.954146i \(0.403232\pi\)
\(450\) 0 0
\(451\) −30.5501 −1.43855
\(452\) 0 0
\(453\) 6.73084i 0.316242i
\(454\) 0 0
\(455\) 1.35026 + 1.19394i 0.0633012 + 0.0559726i
\(456\) 0 0
\(457\) 25.0494i 1.17176i 0.810398 + 0.585880i \(0.199251\pi\)
−0.810398 + 0.585880i \(0.800749\pi\)
\(458\) 0 0
\(459\) −3.74798 −0.174941
\(460\) 0 0
\(461\) −36.8872 −1.71801 −0.859003 0.511970i \(-0.828916\pi\)
−0.859003 + 0.511970i \(0.828916\pi\)
\(462\) 0 0
\(463\) 39.0191i 1.81337i 0.421809 + 0.906685i \(0.361395\pi\)
−0.421809 + 0.906685i \(0.638605\pi\)
\(464\) 0 0
\(465\) −3.76845 + 4.26187i −0.174758 + 0.197639i
\(466\) 0 0
\(467\) 32.7694i 1.51639i 0.652029 + 0.758194i \(0.273918\pi\)
−0.652029 + 0.758194i \(0.726082\pi\)
\(468\) 0 0
\(469\) −7.97556 −0.368277
\(470\) 0 0
\(471\) 1.33567 0.0615446
\(472\) 0 0
\(473\) 24.9683i 1.14804i
\(474\) 0 0
\(475\) −1.02539 8.31265i −0.0470482 0.381411i
\(476\) 0 0
\(477\) 15.8858i 0.727359i
\(478\) 0 0
\(479\) 16.8749 0.771036 0.385518 0.922700i \(-0.374023\pi\)
0.385518 + 0.922700i \(0.374023\pi\)
\(480\) 0 0
\(481\) −3.76845 −0.171827
\(482\) 0 0
\(483\) 2.51388i 0.114386i
\(484\) 0 0
\(485\) −2.77575 + 3.13918i −0.126040 + 0.142543i
\(486\) 0 0
\(487\) 9.24472i 0.418918i −0.977817 0.209459i \(-0.932830\pi\)
0.977817 0.209459i \(-0.0671703\pi\)
\(488\) 0 0
\(489\) 1.07381 0.0485593
\(490\) 0 0
\(491\) 25.7499 1.16208 0.581038 0.813876i \(-0.302647\pi\)
0.581038 + 0.813876i \(0.302647\pi\)
\(492\) 0 0
\(493\) 3.26519i 0.147057i
\(494\) 0 0
\(495\) 17.0435 + 15.0703i 0.766048 + 0.677360i
\(496\) 0 0
\(497\) 6.90175i 0.309586i
\(498\) 0 0
\(499\) −27.7015 −1.24009 −0.620044 0.784567i \(-0.712885\pi\)
−0.620044 + 0.784567i \(0.712885\pi\)
\(500\) 0 0
\(501\) 7.55149 0.337376
\(502\) 0 0
\(503\) 2.35519i 0.105013i −0.998621 0.0525063i \(-0.983279\pi\)
0.998621 0.0525063i \(-0.0167210\pi\)
\(504\) 0 0
\(505\) 17.5877 + 15.5515i 0.782642 + 0.692032i
\(506\) 0 0
\(507\) 0.481194i 0.0213706i
\(508\) 0 0
\(509\) −21.5125 −0.953523 −0.476762 0.879033i \(-0.658190\pi\)
−0.476762 + 0.879033i \(0.658190\pi\)
\(510\) 0 0
\(511\) 9.48612 0.419641
\(512\) 0 0
\(513\) 4.64974i 0.205291i
\(514\) 0 0
\(515\) 22.7635 25.7440i 1.00308 1.13442i
\(516\) 0 0
\(517\) 11.7381i 0.516243i
\(518\) 0 0
\(519\) 12.3127 0.540465
\(520\) 0 0
\(521\) 37.7440 1.65360 0.826798 0.562499i \(-0.190160\pi\)
0.826798 + 0.562499i \(0.190160\pi\)
\(522\) 0 0
\(523\) 23.7416i 1.03815i −0.854729 0.519075i \(-0.826277\pi\)
0.854729 0.519075i \(-0.173723\pi\)
\(524\) 0 0
\(525\) −0.237428 1.92478i −0.0103622 0.0840042i
\(526\) 0 0
\(527\) 7.13918i 0.310988i
\(528\) 0 0
\(529\) −19.0059 −0.826343
\(530\) 0 0
\(531\) 16.5769 0.719376
\(532\) 0 0
\(533\) 8.31265i 0.360061i
\(534\) 0 0
\(535\) −16.4871 + 18.6458i −0.712798 + 0.806127i
\(536\) 0 0
\(537\) 5.83497i 0.251797i
\(538\) 0 0
\(539\) 23.3380 1.00524
\(540\) 0 0
\(541\) 13.0376 0.560531 0.280265 0.959923i \(-0.409578\pi\)
0.280265 + 0.959923i \(0.409578\pi\)
\(542\) 0 0
\(543\) 1.31406i 0.0563919i
\(544\) 0 0
\(545\) −16.0606 14.2012i −0.687962 0.608314i
\(546\) 0 0
\(547\) 8.43041i 0.360458i 0.983625 + 0.180229i \(0.0576839\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(548\) 0 0
\(549\) −4.89587 −0.208951
\(550\) 0 0
\(551\) 4.05079 0.172569
\(552\) 0 0
\(553\) 1.82321i 0.0775306i
\(554\) 0 0
\(555\) 3.03761 + 2.68594i 0.128939 + 0.114012i
\(556\) 0 0
\(557\) 13.6932i 0.580201i −0.956996 0.290100i \(-0.906311\pi\)
0.956996 0.290100i \(-0.0936887\pi\)
\(558\) 0 0
\(559\) 6.79384 0.287349
\(560\) 0 0
\(561\) −2.38787 −0.100816
\(562\) 0 0
\(563\) 8.86907i 0.373787i 0.982380 + 0.186893i \(0.0598419\pi\)
−0.982380 + 0.186893i \(0.940158\pi\)
\(564\) 0 0
\(565\) −0.850969 + 0.962389i −0.0358005 + 0.0404880i
\(566\) 0 0
\(567\) 5.61801i 0.235934i
\(568\) 0 0
\(569\) 32.7816 1.37428 0.687139 0.726526i \(-0.258866\pi\)
0.687139 + 0.726526i \(0.258866\pi\)
\(570\) 0 0
\(571\) −40.2882 −1.68601 −0.843005 0.537906i \(-0.819215\pi\)
−0.843005 + 0.537906i \(0.819215\pi\)
\(572\) 0 0
\(573\) 9.92478i 0.414614i
\(574\) 0 0
\(575\) 32.1622 3.96731i 1.34126 0.165448i
\(576\) 0 0
\(577\) 28.8568i 1.20133i −0.799502 0.600663i \(-0.794903\pi\)
0.799502 0.600663i \(-0.205097\pi\)
\(578\) 0 0
\(579\) 10.4847 0.435729
\(580\) 0 0
\(581\) 3.09825 0.128537
\(582\) 0 0
\(583\) 21.0884i 0.873392i
\(584\) 0 0
\(585\) 4.10062 4.63752i 0.169540 0.191738i
\(586\) 0 0
\(587\) 41.6786i 1.72026i 0.510074 + 0.860131i \(0.329618\pi\)
−0.510074 + 0.860131i \(0.670382\pi\)
\(588\) 0 0
\(589\) −8.85685 −0.364940
\(590\) 0 0
\(591\) 0.962389 0.0395874
\(592\) 0 0
\(593\) 22.4993i 0.923935i 0.886897 + 0.461968i \(0.152856\pi\)
−0.886897 + 0.461968i \(0.847144\pi\)
\(594\) 0 0
\(595\) −1.82321 1.61213i −0.0747442 0.0660908i
\(596\) 0 0
\(597\) 8.06063i 0.329900i
\(598\) 0 0
\(599\) 4.15045 0.169583 0.0847913 0.996399i \(-0.472978\pi\)
0.0847913 + 0.996399i \(0.472978\pi\)
\(600\) 0 0
\(601\) 27.9248 1.13908 0.569538 0.821965i \(-0.307122\pi\)
0.569538 + 0.821965i \(0.307122\pi\)
\(602\) 0 0
\(603\) 27.3923i 1.11550i
\(604\) 0 0
\(605\) 4.19886 + 3.71274i 0.170708 + 0.150944i
\(606\) 0 0
\(607\) 8.19489i 0.332620i 0.986073 + 0.166310i \(0.0531853\pi\)
−0.986073 + 0.166310i \(0.946815\pi\)
\(608\) 0 0
\(609\) 0.937951 0.0380077
\(610\) 0 0
\(611\) 3.19394 0.129213
\(612\) 0 0
\(613\) 33.1392i 1.33848i 0.743047 + 0.669239i \(0.233380\pi\)
−0.743047 + 0.669239i \(0.766620\pi\)
\(614\) 0 0
\(615\) 5.92478 6.70052i 0.238910 0.270191i
\(616\) 0 0
\(617\) 29.0132i 1.16803i 0.811744 + 0.584013i \(0.198518\pi\)
−0.811744 + 0.584013i \(0.801482\pi\)
\(618\) 0 0
\(619\) 12.2134 0.490900 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(620\) 0 0
\(621\) 17.9902 0.721920
\(622\) 0 0
\(623\) 2.23743i 0.0896406i
\(624\) 0 0
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) 0 0
\(627\) 2.96239i 0.118306i
\(628\) 0 0
\(629\) 5.08840 0.202888
\(630\) 0 0
\(631\) 1.22188 0.0486424 0.0243212 0.999704i \(-0.492258\pi\)
0.0243212 + 0.999704i \(0.492258\pi\)
\(632\) 0 0
\(633\) 2.35870i 0.0937498i
\(634\) 0 0
\(635\) 6.36107 7.19394i 0.252431 0.285483i
\(636\) 0 0
\(637\) 6.35026i 0.251607i
\(638\) 0 0
\(639\) −23.7043 −0.937728
\(640\) 0 0
\(641\) −22.1016 −0.872960 −0.436480 0.899714i \(-0.643775\pi\)
−0.436480 + 0.899714i \(0.643775\pi\)
\(642\) 0 0
\(643\) 11.6688i 0.460172i −0.973170 0.230086i \(-0.926099\pi\)
0.973170 0.230086i \(-0.0739008\pi\)
\(644\) 0 0
\(645\) −5.47627 4.84226i −0.215628 0.190664i
\(646\) 0 0
\(647\) 11.9575i 0.470096i 0.971984 + 0.235048i \(0.0755248\pi\)
−0.971984 + 0.235048i \(0.924475\pi\)
\(648\) 0 0
\(649\) 22.0059 0.863806
\(650\) 0 0
\(651\) −2.05079 −0.0803766
\(652\) 0 0
\(653\) 10.9986i 0.430408i −0.976569 0.215204i \(-0.930958\pi\)
0.976569 0.215204i \(-0.0690416\pi\)
\(654\) 0 0
\(655\) 1.40105 + 1.23884i 0.0547434 + 0.0484056i
\(656\) 0 0
\(657\) 32.5804i 1.27108i
\(658\) 0 0
\(659\) −2.63989 −0.102835 −0.0514177 0.998677i \(-0.516374\pi\)
−0.0514177 + 0.998677i \(0.516374\pi\)
\(660\) 0 0
\(661\) 18.3028 0.711896 0.355948 0.934506i \(-0.384158\pi\)
0.355948 + 0.934506i \(0.384158\pi\)
\(662\) 0 0
\(663\) 0.649738i 0.0252337i
\(664\) 0 0
\(665\) 2.00000 2.26187i 0.0775567 0.0877114i
\(666\) 0 0
\(667\) 15.6728i 0.606852i
\(668\) 0 0
\(669\) 11.9854 0.463383
\(670\) 0 0
\(671\) −6.49929 −0.250902
\(672\) 0 0
\(673\) 6.71037i 0.258666i 0.991601 + 0.129333i \(0.0412836\pi\)
−0.991601 + 0.129333i \(0.958716\pi\)
\(674\) 0 0
\(675\) −13.7743 + 1.69911i −0.530174 + 0.0653987i
\(676\) 0 0
\(677\) 1.57593i 0.0605679i 0.999541 + 0.0302840i \(0.00964116\pi\)
−0.999541 + 0.0302840i \(0.990359\pi\)
\(678\) 0 0
\(679\) −1.51056 −0.0579698
\(680\) 0 0
\(681\) −4.79033 −0.183566
\(682\) 0 0
\(683\) 15.1939i 0.581380i −0.956817 0.290690i \(-0.906115\pi\)
0.956817 0.290690i \(-0.0938848\pi\)
\(684\) 0 0
\(685\) −22.1260 + 25.0230i −0.845391 + 0.956081i
\(686\) 0 0
\(687\) 2.57452i 0.0982239i
\(688\) 0 0
\(689\) 5.73813 0.218606
\(690\) 0 0
\(691\) 18.7127 0.711866 0.355933 0.934511i \(-0.384163\pi\)
0.355933 + 0.934511i \(0.384163\pi\)
\(692\) 0 0
\(693\) 8.20123i 0.311539i
\(694\) 0 0
\(695\) −14.1359 12.4993i −0.536204 0.474125i
\(696\) 0 0
\(697\) 11.2243i 0.425149i
\(698\) 0 0
\(699\) 5.17821 0.195858
\(700\) 0 0
\(701\) 24.3028 0.917904 0.458952 0.888461i \(-0.348225\pi\)
0.458952 + 0.888461i \(0.348225\pi\)
\(702\) 0 0
\(703\) 6.31265i 0.238086i
\(704\) 0 0
\(705\) −2.57452 2.27645i −0.0969619 0.0857362i
\(706\) 0 0
\(707\) 8.46310i 0.318287i
\(708\) 0 0
\(709\) 9.66291 0.362898 0.181449 0.983400i \(-0.441921\pi\)
0.181449 + 0.983400i \(0.441921\pi\)
\(710\) 0 0
\(711\) −6.26187 −0.234838
\(712\) 0 0
\(713\) 34.2677i 1.28334i
\(714\) 0 0
\(715\) 5.44358 6.15633i 0.203578 0.230234i
\(716\) 0 0
\(717\) 5.70782i 0.213162i
\(718\) 0 0
\(719\) 28.4142 1.05967 0.529836 0.848100i \(-0.322254\pi\)
0.529836 + 0.848100i \(0.322254\pi\)
\(720\) 0 0
\(721\) 12.3879 0.461349
\(722\) 0 0
\(723\) 13.7743i 0.512273i
\(724\) 0 0
\(725\) −1.48024 12.0000i −0.0549747 0.445669i
\(726\) 0 0
\(727\) 34.8545i 1.29268i −0.763049 0.646341i \(-0.776299\pi\)
0.763049 0.646341i \(-0.223701\pi\)
\(728\) 0 0
\(729\) 15.2882 0.566230
\(730\) 0 0
\(731\) −9.17347 −0.339293
\(732\) 0 0
\(733\) 6.25202i 0.230923i 0.993312 + 0.115462i \(0.0368348\pi\)
−0.993312 + 0.115462i \(0.963165\pi\)
\(734\) 0 0
\(735\) −4.52610 + 5.11871i −0.166948 + 0.188807i
\(736\) 0 0
\(737\) 36.3634i 1.33946i
\(738\) 0 0
\(739\) −32.0846 −1.18025 −0.590126 0.807311i \(-0.700922\pi\)
−0.590126 + 0.807311i \(0.700922\pi\)
\(740\) 0 0
\(741\) −0.806063 −0.0296115
\(742\) 0 0
\(743\) 30.5442i 1.12056i 0.828304 + 0.560279i \(0.189306\pi\)
−0.828304 + 0.560279i \(0.810694\pi\)
\(744\) 0 0
\(745\) 19.0132 + 16.8119i 0.696589 + 0.615942i
\(746\) 0 0
\(747\) 10.6410i 0.389335i
\(748\) 0 0
\(749\) −8.97224 −0.327838
\(750\) 0 0
\(751\) −28.1622 −1.02765 −0.513827 0.857894i \(-0.671773\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(752\) 0 0
\(753\) 9.32865i 0.339955i
\(754\) 0 0
\(755\) −23.4314 20.7186i −0.852755 0.754028i
\(756\) 0 0
\(757\) 35.4109i 1.28703i −0.765433 0.643515i \(-0.777475\pi\)
0.765433 0.643515i \(-0.222525\pi\)
\(758\) 0 0
\(759\) 11.4617 0.416033
\(760\) 0 0
\(761\) −19.2388 −0.697407 −0.348704 0.937233i \(-0.613378\pi\)
−0.348704 + 0.937233i \(0.613378\pi\)
\(762\) 0 0
\(763\) 7.72829i 0.279783i
\(764\) 0 0
\(765\) −5.53690 + 6.26187i −0.200187 + 0.226398i
\(766\) 0 0
\(767\) 5.98778i 0.216206i
\(768\) 0 0
\(769\) −48.9643 −1.76570 −0.882849 0.469657i \(-0.844378\pi\)
−0.882849 + 0.469657i \(0.844378\pi\)
\(770\) 0 0
\(771\) 11.0014 0.396206
\(772\) 0 0
\(773\) 46.1681i 1.66055i 0.557354 + 0.830275i \(0.311817\pi\)
−0.557354 + 0.830275i \(0.688183\pi\)
\(774\) 0 0
\(775\) 3.23647 + 26.2374i 0.116258 + 0.942476i
\(776\) 0 0
\(777\) 1.46168i 0.0524375i
\(778\) 0 0
\(779\) 13.9248 0.498907
\(780\) 0 0
\(781\) −31.4676 −1.12600
\(782\) 0 0
\(783\) 6.71228i 0.239877i
\(784\) 0 0
\(785\) 4.11142 4.64974i 0.146743 0.165956i
\(786\) 0 0
\(787\) 22.6458i 0.807234i −0.914928 0.403617i \(-0.867753\pi\)
0.914928 0.403617i \(-0.132247\pi\)
\(788\) 0 0
\(789\) 10.5296 0.374864
\(790\) 0 0
\(791\) −0.463096 −0.0164658
\(792\) 0 0
\(793\) 1.76845i 0.0627996i
\(794\) 0 0
\(795\) −4.62530 4.08981i −0.164043 0.145051i
\(796\) 0 0
\(797\) 8.23743i 0.291785i −0.989300 0.145892i \(-0.953395\pi\)
0.989300 0.145892i \(-0.0466053\pi\)
\(798\) 0 0
\(799\) −4.31265 −0.152571
\(800\) 0 0
\(801\) −7.68452 −0.271519
\(802\) 0 0
\(803\) 43.2506i 1.52628i
\(804\) 0 0
\(805\) 8.75131 + 7.73813i 0.308443 + 0.272733i
\(806\) 0 0
\(807\) 10.9478i 0.385381i
\(808\) 0 0
\(809\) −44.1319 −1.55159 −0.775797 0.630982i \(-0.782652\pi\)
−0.775797 + 0.630982i \(0.782652\pi\)
\(810\) 0 0
\(811\) −22.6883 −0.796694 −0.398347 0.917235i \(-0.630416\pi\)
−0.398347 + 0.917235i \(0.630416\pi\)
\(812\) 0 0
\(813\) 0.0594941i 0.00208655i
\(814\) 0 0
\(815\) 3.30536 3.73813i 0.115782 0.130941i
\(816\) 0 0
\(817\) 11.3806i 0.398156i
\(818\) 0 0
\(819\) 2.23155 0.0779766
\(820\) 0 0
\(821\) −50.2736 −1.75456 −0.877281 0.479978i \(-0.840645\pi\)
−0.877281 + 0.479978i \(0.840645\pi\)
\(822\) 0 0
\(823\) 5.13093i 0.178853i −0.995993 0.0894265i \(-0.971497\pi\)
0.995993 0.0894265i \(-0.0285034\pi\)
\(824\) 0 0
\(825\) −8.77575 + 1.08252i −0.305532 + 0.0376884i
\(826\) 0 0
\(827\) 18.6946i 0.650076i 0.945701 + 0.325038i \(0.105377\pi\)
−0.945701 + 0.325038i \(0.894623\pi\)
\(828\) 0 0
\(829\) 3.44121 0.119518 0.0597591 0.998213i \(-0.480967\pi\)
0.0597591 + 0.998213i \(0.480967\pi\)
\(830\) 0 0
\(831\) −7.38646 −0.256233
\(832\) 0 0
\(833\) 8.57452i 0.297089i
\(834\) 0 0
\(835\) 23.2447 26.2882i 0.804417 0.909741i
\(836\) 0 0
\(837\) 14.6761i 0.507280i
\(838\) 0 0
\(839\) −52.6248 −1.81681 −0.908406 0.418090i \(-0.862700\pi\)
−0.908406 + 0.418090i \(0.862700\pi\)
\(840\) 0 0
\(841\) −23.1524 −0.798357
\(842\) 0 0
\(843\) 6.70052i 0.230778i
\(844\) 0 0
\(845\) −1.67513 1.48119i −0.0576263 0.0509546i
\(846\) 0 0
\(847\) 2.02047i 0.0694241i
\(848\) 0 0
\(849\) 9.80748 0.336592
\(850\) 0 0
\(851\) −24.4241 −0.837246
\(852\) 0 0
\(853\) 6.31853i 0.216342i −0.994132 0.108171i \(-0.965501\pi\)
0.994132 0.108171i \(-0.0344995\pi\)
\(854\) 0 0
\(855\) −7.76845 6.86907i −0.265675 0.234917i
\(856\) 0 0
\(857\) 0.775746i 0.0264990i 0.999912 + 0.0132495i \(0.00421757\pi\)
−0.999912 + 0.0132495i \(0.995782\pi\)
\(858\) 0 0
\(859\) 3.24869 0.110844 0.0554220 0.998463i \(-0.482350\pi\)
0.0554220 + 0.998463i \(0.482350\pi\)
\(860\) 0 0
\(861\) 3.22425 0.109882
\(862\) 0 0
\(863\) 19.9208i 0.678112i 0.940766 + 0.339056i \(0.110108\pi\)
−0.940766 + 0.339056i \(0.889892\pi\)
\(864\) 0 0
\(865\) 37.9003 42.8627i 1.28865 1.45738i
\(866\) 0 0
\(867\) 7.30299i 0.248022i
\(868\) 0 0
\(869\) −8.31265 −0.281987
\(870\) 0 0
\(871\) 9.89446 0.335261
\(872\) 0 0
\(873\) 5.18806i 0.175589i
\(874\) 0 0
\(875\) −7.43136 5.09825i −0.251226 0.172352i
\(876\) 0 0
\(877\) 22.1378i 0.747539i −0.927522 0.373770i \(-0.878065\pi\)
0.927522 0.373770i \(-0.121935\pi\)
\(878\) 0 0
\(879\) −2.58910 −0.0873283
\(880\) 0 0
\(881\) 2.23155 0.0751828 0.0375914 0.999293i \(-0.488031\pi\)
0.0375914 + 0.999293i \(0.488031\pi\)
\(882\) 0 0
\(883\) 4.30440i 0.144855i 0.997374 + 0.0724273i \(0.0230745\pi\)
−0.997374 + 0.0724273i \(0.976925\pi\)
\(884\) 0 0
\(885\) −4.26774 + 4.82653i −0.143459 + 0.162242i
\(886\) 0 0
\(887\) 15.9330i 0.534979i 0.963561 + 0.267489i \(0.0861940\pi\)
−0.963561 + 0.267489i \(0.913806\pi\)
\(888\) 0 0
\(889\) 3.46168 0.116101
\(890\) 0 0
\(891\) 25.6145 0.858118
\(892\) 0 0
\(893\) 5.35026i 0.179040i
\(894\) 0 0
\(895\) 20.3127 + 17.9610i 0.678977 + 0.600369i
\(896\) 0 0
\(897\) 3.11871i 0.104131i
\(898\) 0 0
\(899\) −12.7856 −0.426423
\(900\) 0 0
\(901\) −7.74798 −0.258123
\(902\) 0 0
\(903\) 2.63515i 0.0876923i
\(904\) 0 0
\(905\) −4.57452 4.04491i −0.152062 0.134457i
\(906\) 0 0
\(907\) 51.9086i 1.72360i −0.507251 0.861798i \(-0.669338\pi\)
0.507251 0.861798i \(-0.330662\pi\)
\(908\) 0 0
\(909\) 29.0668 0.964085
\(910\) 0 0
\(911\) 9.67750 0.320630 0.160315 0.987066i \(-0.448749\pi\)
0.160315 + 0.987066i \(0.448749\pi\)
\(912\) 0 0
\(913\) 14.1260i 0.467503i
\(914\) 0 0
\(915\) 1.26045 1.42548i 0.0416692 0.0471251i
\(916\) 0 0
\(917\) 0.674176i 0.0222632i
\(918\) 0 0
\(919\) 13.5515 0.447022 0.223511 0.974701i \(-0.428248\pi\)
0.223511 + 0.974701i \(0.428248\pi\)
\(920\) 0 0
\(921\) 9.22425 0.303949
\(922\) 0 0
\(923\) 8.56230i 0.281831i
\(924\) 0 0
\(925\) 18.7005 2.30677i 0.614869 0.0758462i
\(926\) 0 0
\(927\) 42.5466i 1.39741i
\(928\) 0 0
\(929\) 9.44992 0.310042 0.155021 0.987911i \(-0.450455\pi\)
0.155021 + 0.987911i \(0.450455\pi\)
\(930\) 0 0
\(931\) −10.6375 −0.348631
\(932\) 0 0
\(933\) 12.1504i 0.397788i
\(934\) 0 0
\(935\) −7.35026 + 8.31265i −0.240379 + 0.271853i
\(936\) 0 0
\(937\) 16.0409i 0.524035i −0.965063 0.262017i \(-0.915612\pi\)
0.965063 0.262017i \(-0.0843877\pi\)
\(938\) 0 0
\(939\) −1.35309 −0.0441565
\(940\) 0 0
\(941\) −21.6747 −0.706574 −0.353287 0.935515i \(-0.614936\pi\)
−0.353287 + 0.935515i \(0.614936\pi\)
\(942\) 0 0
\(943\) 53.8759i 1.75444i
\(944\) 0 0
\(945\) −3.74798 3.31406i −0.121922 0.107807i
\(946\) 0 0
\(947\) 4.63118i 0.150493i −0.997165 0.0752466i \(-0.976026\pi\)
0.997165 0.0752466i \(-0.0239744\pi\)
\(948\) 0 0
\(949\) −11.7685 −0.382020
\(950\) 0 0
\(951\) −11.4372 −0.370878
\(952\) 0 0
\(953\) 26.2981i 0.851878i 0.904752 + 0.425939i \(0.140056\pi\)
−0.904752 + 0.425939i \(0.859944\pi\)
\(954\) 0 0
\(955\) −34.5501 30.5501i −1.11801 0.988577i
\(956\) 0 0
\(957\) 4.27645i 0.138238i
\(958\) 0 0
\(959\) −12.0409 −0.388822
\(960\) 0 0
\(961\) −3.04491 −0.0982228
\(962\) 0 0
\(963\) 30.8155i 0.993014i
\(964\) 0 0
\(965\) 32.2736 36.4993i 1.03892 1.17495i
\(966\) 0 0
\(967\) 11.9405i 0.383981i −0.981397 0.191990i \(-0.938506\pi\)
0.981397 0.191990i \(-0.0614942\pi\)
\(968\) 0 0
\(969\) 1.08840 0.0349643
\(970\) 0 0
\(971\) −30.1524 −0.967635 −0.483818 0.875169i \(-0.660750\pi\)
−0.483818 + 0.875169i \(0.660750\pi\)
\(972\) 0 0
\(973\) 6.80209i 0.218065i
\(974\) 0 0
\(975\) 0.294552 + 2.38787i 0.00943321 + 0.0764731i
\(976\) 0 0
\(977\) 26.9321i 0.861633i −0.902439 0.430817i \(-0.858226\pi\)
0.902439 0.430817i \(-0.141774\pi\)
\(978\) 0 0
\(979\) −10.2012 −0.326033
\(980\) 0 0
\(981\) −26.5431 −0.847455
\(982\) 0 0
\(983\) 20.5902i 0.656727i 0.944551 + 0.328363i \(0.106497\pi\)
−0.944551 + 0.328363i \(0.893503\pi\)
\(984\) 0 0
\(985\) 2.96239 3.35026i 0.0943895 0.106748i
\(986\) 0 0
\(987\) 1.23884i 0.0394328i
\(988\) 0 0
\(989\) 44.0322 1.40014
\(990\) 0 0
\(991\) 48.1378 1.52915 0.764573 0.644537i \(-0.222950\pi\)
0.764573 + 0.644537i \(0.222950\pi\)
\(992\) 0 0
\(993\) 5.67864i 0.180206i
\(994\) 0 0
\(995\) −28.0606 24.8119i −0.889582 0.786591i
\(996\) 0 0
\(997\) 33.4255i 1.05860i −0.848436 0.529298i \(-0.822455\pi\)
0.848436 0.529298i \(-0.177545\pi\)
\(998\) 0 0
\(999\) 10.4603 0.330948
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.d.c.209.4 6
4.3 odd 2 65.2.b.a.14.1 6
5.2 odd 4 5200.2.a.cb.1.3 3
5.3 odd 4 5200.2.a.cj.1.1 3
5.4 even 2 inner 1040.2.d.c.209.3 6
12.11 even 2 585.2.c.b.469.6 6
20.3 even 4 325.2.a.j.1.1 3
20.7 even 4 325.2.a.k.1.3 3
20.19 odd 2 65.2.b.a.14.6 yes 6
52.3 odd 6 845.2.n.f.529.6 12
52.7 even 12 845.2.l.d.699.1 12
52.11 even 12 845.2.l.d.654.2 12
52.15 even 12 845.2.l.e.654.6 12
52.19 even 12 845.2.l.e.699.5 12
52.23 odd 6 845.2.n.g.529.1 12
52.31 even 4 845.2.d.a.844.1 6
52.35 odd 6 845.2.n.f.484.1 12
52.43 odd 6 845.2.n.g.484.6 12
52.47 even 4 845.2.d.b.844.5 6
52.51 odd 2 845.2.b.c.339.6 6
60.23 odd 4 2925.2.a.bj.1.3 3
60.47 odd 4 2925.2.a.bf.1.1 3
60.59 even 2 585.2.c.b.469.1 6
260.19 even 12 845.2.l.d.699.2 12
260.59 even 12 845.2.l.e.699.6 12
260.99 even 4 845.2.d.a.844.2 6
260.103 even 4 4225.2.a.bh.1.3 3
260.119 even 12 845.2.l.d.654.1 12
260.139 odd 6 845.2.n.f.484.6 12
260.159 odd 6 845.2.n.f.529.1 12
260.179 odd 6 845.2.n.g.529.6 12
260.199 odd 6 845.2.n.g.484.1 12
260.207 even 4 4225.2.a.ba.1.1 3
260.219 even 12 845.2.l.e.654.5 12
260.239 even 4 845.2.d.b.844.6 6
260.259 odd 2 845.2.b.c.339.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 4.3 odd 2
65.2.b.a.14.6 yes 6 20.19 odd 2
325.2.a.j.1.1 3 20.3 even 4
325.2.a.k.1.3 3 20.7 even 4
585.2.c.b.469.1 6 60.59 even 2
585.2.c.b.469.6 6 12.11 even 2
845.2.b.c.339.1 6 260.259 odd 2
845.2.b.c.339.6 6 52.51 odd 2
845.2.d.a.844.1 6 52.31 even 4
845.2.d.a.844.2 6 260.99 even 4
845.2.d.b.844.5 6 52.47 even 4
845.2.d.b.844.6 6 260.239 even 4
845.2.l.d.654.1 12 260.119 even 12
845.2.l.d.654.2 12 52.11 even 12
845.2.l.d.699.1 12 52.7 even 12
845.2.l.d.699.2 12 260.19 even 12
845.2.l.e.654.5 12 260.219 even 12
845.2.l.e.654.6 12 52.15 even 12
845.2.l.e.699.5 12 52.19 even 12
845.2.l.e.699.6 12 260.59 even 12
845.2.n.f.484.1 12 52.35 odd 6
845.2.n.f.484.6 12 260.139 odd 6
845.2.n.f.529.1 12 260.159 odd 6
845.2.n.f.529.6 12 52.3 odd 6
845.2.n.g.484.1 12 260.199 odd 6
845.2.n.g.484.6 12 52.43 odd 6
845.2.n.g.529.1 12 52.23 odd 6
845.2.n.g.529.6 12 260.179 odd 6
1040.2.d.c.209.3 6 5.4 even 2 inner
1040.2.d.c.209.4 6 1.1 even 1 trivial
2925.2.a.bf.1.1 3 60.47 odd 4
2925.2.a.bj.1.3 3 60.23 odd 4
4225.2.a.ba.1.1 3 260.207 even 4
4225.2.a.bh.1.3 3 260.103 even 4
5200.2.a.cb.1.3 3 5.2 odd 4
5200.2.a.cj.1.1 3 5.3 odd 4