Properties

Label 4225.2.a.bh.1.3
Level 42254225
Weight 22
Character 4225.1
Self dual yes
Analytic conductor 33.73733.737
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4225=52132 4225 = 5^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.736794854033.7367948540
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 65)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.48119-1.48119 of defining polynomial
Character χ\chi == 4225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.67513q2+0.481194q3+5.15633q4+1.28726q6+0.806063q7+8.44358q82.76845q9+3.67513q11+2.48119q12+2.15633q14+12.2750q16+1.35026q177.40597q18+1.67513q19+0.387873q21+9.83146q226.48119q23+4.06300q242.77575q27+4.15633q28+2.41819q29+5.28726q31+15.9502q32+1.76845q33+3.61213q3414.2750q36+3.76845q37+4.48119q38+8.31265q41+1.03761q42+6.79384q43+18.9502q4417.3380q46+3.19394q47+5.90668q486.35026q49+0.649738q515.73813q537.42548q54+6.80606q56+0.806063q57+6.46898q585.98778q591.76845q61+14.1441q622.23155q63+18.1187q64+4.73084q66+9.89446q67+6.96239q683.11871q698.56230q7123.3757q7211.7685q73+10.0811q74+8.63752q76+2.96239q772.26187q79+6.96968q81+22.2374q82+3.84367q83+2.00000q84+18.1744q86+1.16362q87+31.0313q882.77575q8933.4191q92+2.54420q93+8.54420q94+7.67513q961.87399q9716.9878q9810.1744q99+O(q100)q+2.67513 q^{2} +0.481194 q^{3} +5.15633 q^{4} +1.28726 q^{6} +0.806063 q^{7} +8.44358 q^{8} -2.76845 q^{9} +3.67513 q^{11} +2.48119 q^{12} +2.15633 q^{14} +12.2750 q^{16} +1.35026 q^{17} -7.40597 q^{18} +1.67513 q^{19} +0.387873 q^{21} +9.83146 q^{22} -6.48119 q^{23} +4.06300 q^{24} -2.77575 q^{27} +4.15633 q^{28} +2.41819 q^{29} +5.28726 q^{31} +15.9502 q^{32} +1.76845 q^{33} +3.61213 q^{34} -14.2750 q^{36} +3.76845 q^{37} +4.48119 q^{38} +8.31265 q^{41} +1.03761 q^{42} +6.79384 q^{43} +18.9502 q^{44} -17.3380 q^{46} +3.19394 q^{47} +5.90668 q^{48} -6.35026 q^{49} +0.649738 q^{51} -5.73813 q^{53} -7.42548 q^{54} +6.80606 q^{56} +0.806063 q^{57} +6.46898 q^{58} -5.98778 q^{59} -1.76845 q^{61} +14.1441 q^{62} -2.23155 q^{63} +18.1187 q^{64} +4.73084 q^{66} +9.89446 q^{67} +6.96239 q^{68} -3.11871 q^{69} -8.56230 q^{71} -23.3757 q^{72} -11.7685 q^{73} +10.0811 q^{74} +8.63752 q^{76} +2.96239 q^{77} -2.26187 q^{79} +6.96968 q^{81} +22.2374 q^{82} +3.84367 q^{83} +2.00000 q^{84} +18.1744 q^{86} +1.16362 q^{87} +31.0313 q^{88} -2.77575 q^{89} -33.4191 q^{92} +2.54420 q^{93} +8.54420 q^{94} +7.67513 q^{96} -1.87399 q^{97} -16.9878 q^{98} -10.1744 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q24q3+5q42q6+2q7+9q8+3q9+6q11+2q124q14+5q166q17+5q18+2q21+14q2214q23+8q2410q27+2q28++8q99+O(q100) 3 q + 3 q^{2} - 4 q^{3} + 5 q^{4} - 2 q^{6} + 2 q^{7} + 9 q^{8} + 3 q^{9} + 6 q^{11} + 2 q^{12} - 4 q^{14} + 5 q^{16} - 6 q^{17} + 5 q^{18} + 2 q^{21} + 14 q^{22} - 14 q^{23} + 8 q^{24} - 10 q^{27} + 2 q^{28}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.67513 1.89160 0.945802 0.324745i 0.105279π-0.105279\pi
0.945802 + 0.324745i 0.105279π0.105279\pi
33 0.481194 0.277818 0.138909 0.990305i 0.455641π-0.455641\pi
0.138909 + 0.990305i 0.455641π0.455641\pi
44 5.15633 2.57816
55 0 0
66 1.28726 0.525521
77 0.806063 0.304663 0.152332 0.988329i 0.451322π-0.451322\pi
0.152332 + 0.988329i 0.451322π0.451322\pi
88 8.44358 2.98526
99 −2.76845 −0.922817
1010 0 0
1111 3.67513 1.10809 0.554047 0.832486i 0.313083π-0.313083\pi
0.554047 + 0.832486i 0.313083π0.313083\pi
1212 2.48119 0.716259
1313 0 0
1414 2.15633 0.576302
1515 0 0
1616 12.2750 3.06876
1717 1.35026 0.327487 0.163743 0.986503i 0.447643π-0.447643\pi
0.163743 + 0.986503i 0.447643π0.447643\pi
1818 −7.40597 −1.74560
1919 1.67513 0.384301 0.192151 0.981365i 0.438454π-0.438454\pi
0.192151 + 0.981365i 0.438454π0.438454\pi
2020 0 0
2121 0.387873 0.0846409
2222 9.83146 2.09607
2323 −6.48119 −1.35142 −0.675711 0.737166i 0.736163π-0.736163\pi
−0.675711 + 0.737166i 0.736163π0.736163\pi
2424 4.06300 0.829357
2525 0 0
2626 0 0
2727 −2.77575 −0.534193
2828 4.15633 0.785472
2929 2.41819 0.449047 0.224523 0.974469i 0.427917π-0.427917\pi
0.224523 + 0.974469i 0.427917π0.427917\pi
3030 0 0
3131 5.28726 0.949620 0.474810 0.880088i 0.342517π-0.342517\pi
0.474810 + 0.880088i 0.342517π0.342517\pi
3232 15.9502 2.81962
3333 1.76845 0.307848
3434 3.61213 0.619475
3535 0 0
3636 −14.2750 −2.37917
3737 3.76845 0.619530 0.309765 0.950813i 0.399750π-0.399750\pi
0.309765 + 0.950813i 0.399750π0.399750\pi
3838 4.48119 0.726946
3939 0 0
4040 0 0
4141 8.31265 1.29822 0.649109 0.760695i 0.275142π-0.275142\pi
0.649109 + 0.760695i 0.275142π0.275142\pi
4242 1.03761 0.160107
4343 6.79384 1.03605 0.518026 0.855365i 0.326667π-0.326667\pi
0.518026 + 0.855365i 0.326667π0.326667\pi
4444 18.9502 2.85685
4545 0 0
4646 −17.3380 −2.55635
4747 3.19394 0.465884 0.232942 0.972491i 0.425165π-0.425165\pi
0.232942 + 0.972491i 0.425165π0.425165\pi
4848 5.90668 0.852556
4949 −6.35026 −0.907180
5050 0 0
5151 0.649738 0.0909816
5252 0 0
5353 −5.73813 −0.788193 −0.394097 0.919069i 0.628943π-0.628943\pi
−0.394097 + 0.919069i 0.628943π0.628943\pi
5454 −7.42548 −1.01048
5555 0 0
5656 6.80606 0.909498
5757 0.806063 0.106766
5858 6.46898 0.849418
5959 −5.98778 −0.779543 −0.389771 0.920912i 0.627446π-0.627446\pi
−0.389771 + 0.920912i 0.627446π0.627446\pi
6060 0 0
6161 −1.76845 −0.226427 −0.113214 0.993571i 0.536114π-0.536114\pi
−0.113214 + 0.993571i 0.536114π0.536114\pi
6262 14.1441 1.79630
6363 −2.23155 −0.281149
6464 18.1187 2.26484
6565 0 0
6666 4.73084 0.582326
6767 9.89446 1.20880 0.604400 0.796681i 0.293413π-0.293413\pi
0.604400 + 0.796681i 0.293413π0.293413\pi
6868 6.96239 0.844314
6969 −3.11871 −0.375449
7070 0 0
7171 −8.56230 −1.01616 −0.508079 0.861311i 0.669644π-0.669644\pi
−0.508079 + 0.861311i 0.669644π0.669644\pi
7272 −23.3757 −2.75485
7373 −11.7685 −1.37739 −0.688697 0.725050i 0.741817π-0.741817\pi
−0.688697 + 0.725050i 0.741817π0.741817\pi
7474 10.0811 1.17190
7575 0 0
7676 8.63752 0.990791
7777 2.96239 0.337596
7878 0 0
7979 −2.26187 −0.254480 −0.127240 0.991872i 0.540612π-0.540612\pi
−0.127240 + 0.991872i 0.540612π0.540612\pi
8080 0 0
8181 6.96968 0.774409
8282 22.2374 2.45571
8383 3.84367 0.421898 0.210949 0.977497i 0.432345π-0.432345\pi
0.210949 + 0.977497i 0.432345π0.432345\pi
8484 2.00000 0.218218
8585 0 0
8686 18.1744 1.95980
8787 1.16362 0.124753
8888 31.0313 3.30794
8989 −2.77575 −0.294229 −0.147114 0.989120i 0.546999π-0.546999\pi
−0.147114 + 0.989120i 0.546999π0.546999\pi
9090 0 0
9191 0 0
9292 −33.4191 −3.48419
9393 2.54420 0.263821
9494 8.54420 0.881267
9595 0 0
9696 7.67513 0.783340
9797 −1.87399 −0.190275 −0.0951375 0.995464i 0.530329π-0.530329\pi
−0.0951375 + 0.995464i 0.530329π0.530329\pi
9898 −16.9878 −1.71603
9999 −10.1744 −1.02257
100100 0 0
101101 10.4993 1.04472 0.522359 0.852725i 0.325052π-0.325052\pi
0.522359 + 0.852725i 0.325052π0.325052\pi
102102 1.73813 0.172101
103103 −15.3684 −1.51429 −0.757145 0.653247i 0.773406π-0.773406\pi
−0.757145 + 0.653247i 0.773406π0.773406\pi
104104 0 0
105105 0 0
106106 −15.3503 −1.49095
107107 −11.1309 −1.07607 −0.538034 0.842923i 0.680833π-0.680833\pi
−0.538034 + 0.842923i 0.680833π0.680833\pi
108108 −14.3127 −1.37724
109109 −9.58769 −0.918334 −0.459167 0.888350i 0.651852π-0.651852\pi
−0.459167 + 0.888350i 0.651852π0.651852\pi
110110 0 0
111111 1.81336 0.172116
112112 9.89446 0.934939
113113 −0.574515 −0.0540459 −0.0270229 0.999635i 0.508603π-0.508603\pi
−0.0270229 + 0.999635i 0.508603π0.508603\pi
114114 2.15633 0.201958
115115 0 0
116116 12.4690 1.15772
117117 0 0
118118 −16.0181 −1.47459
119119 1.08840 0.0997732
120120 0 0
121121 2.50659 0.227872
122122 −4.73084 −0.428310
123123 4.00000 0.360668
124124 27.2628 2.44827
125125 0 0
126126 −5.96968 −0.531822
127127 4.29455 0.381080 0.190540 0.981679i 0.438976π-0.438976\pi
0.190540 + 0.981679i 0.438976π0.438976\pi
128128 16.5696 1.46456
129129 3.26916 0.287833
130130 0 0
131131 −0.836381 −0.0730749 −0.0365375 0.999332i 0.511633π-0.511633\pi
−0.0365375 + 0.999332i 0.511633π0.511633\pi
132132 9.11871 0.793682
133133 1.35026 0.117083
134134 26.4690 2.28657
135135 0 0
136136 11.4010 0.977632
137137 −14.9380 −1.27624 −0.638118 0.769939i 0.720287π-0.720287\pi
−0.638118 + 0.769939i 0.720287π0.720287\pi
138138 −8.34297 −0.710201
139139 −8.43866 −0.715758 −0.357879 0.933768i 0.616500π-0.616500\pi
−0.357879 + 0.933768i 0.616500π0.616500\pi
140140 0 0
141141 1.53690 0.129431
142142 −22.9053 −1.92217
143143 0 0
144144 −33.9829 −2.83190
145145 0 0
146146 −31.4821 −2.60548
147147 −3.05571 −0.252031
148148 19.4314 1.59725
149149 11.3503 0.929850 0.464925 0.885350i 0.346081π-0.346081\pi
0.464925 + 0.885350i 0.346081π0.346081\pi
150150 0 0
151151 −13.9878 −1.13831 −0.569155 0.822230i 0.692729π-0.692729\pi
−0.569155 + 0.822230i 0.692729π0.692729\pi
152152 14.1441 1.14724
153153 −3.73813 −0.302210
154154 7.92478 0.638597
155155 0 0
156156 0 0
157157 −2.77575 −0.221529 −0.110764 0.993847i 0.535330π-0.535330\pi
−0.110764 + 0.993847i 0.535330π0.535330\pi
158158 −6.05079 −0.481375
159159 −2.76116 −0.218974
160160 0 0
161161 −5.22425 −0.411729
162162 18.6448 1.46487
163163 2.23155 0.174788 0.0873942 0.996174i 0.472146π-0.472146\pi
0.0873942 + 0.996174i 0.472146π0.472146\pi
164164 42.8627 3.34702
165165 0 0
166166 10.2823 0.798064
167167 −15.6932 −1.21438 −0.607189 0.794557i 0.707703π-0.707703\pi
−0.607189 + 0.794557i 0.707703π0.707703\pi
168168 3.27504 0.252675
169169 0 0
170170 0 0
171171 −4.63752 −0.354640
172172 35.0313 2.67111
173173 25.5877 1.94540 0.972698 0.232075i 0.0745513π-0.0745513\pi
0.972698 + 0.232075i 0.0745513π0.0745513\pi
174174 3.11283 0.235983
175175 0 0
176176 45.1124 3.40047
177177 −2.88129 −0.216571
178178 −7.42548 −0.556564
179179 12.1260 0.906340 0.453170 0.891424i 0.350293π-0.350293\pi
0.453170 + 0.891424i 0.350293π0.350293\pi
180180 0 0
181181 −2.73084 −0.202982 −0.101491 0.994836i 0.532361π-0.532361\pi
−0.101491 + 0.994836i 0.532361π0.532361\pi
182182 0 0
183183 −0.850969 −0.0629054
184184 −54.7245 −4.03434
185185 0 0
186186 6.80606 0.499045
187187 4.96239 0.362886
188188 16.4690 1.20112
189189 −2.23743 −0.162749
190190 0 0
191191 20.6253 1.49239 0.746197 0.665725i 0.231878π-0.231878\pi
0.746197 + 0.665725i 0.231878π0.231878\pi
192192 8.71862 0.629212
193193 −21.7889 −1.56840 −0.784200 0.620508i 0.786927π-0.786927\pi
−0.784200 + 0.620508i 0.786927π0.786927\pi
194194 −5.01317 −0.359925
195195 0 0
196196 −32.7440 −2.33886
197197 2.00000 0.142494 0.0712470 0.997459i 0.477302π-0.477302\pi
0.0712470 + 0.997459i 0.477302π0.477302\pi
198198 −27.2179 −1.93429
199199 −16.7513 −1.18747 −0.593734 0.804661i 0.702347π-0.702347\pi
−0.593734 + 0.804661i 0.702347π0.702347\pi
200200 0 0
201201 4.76116 0.335826
202202 28.0870 1.97619
203203 1.94921 0.136808
204204 3.35026 0.234565
205205 0 0
206206 −41.1124 −2.86443
207207 17.9429 1.24712
208208 0 0
209209 6.15633 0.425842
210210 0 0
211211 −4.90175 −0.337451 −0.168725 0.985663i 0.553965π-0.553965\pi
−0.168725 + 0.985663i 0.553965π0.553965\pi
212212 −29.5877 −2.03209
213213 −4.12013 −0.282307
214214 −29.7767 −2.03549
215215 0 0
216216 −23.4372 −1.59470
217217 4.26187 0.289314
218218 −25.6483 −1.73712
219219 −5.66291 −0.382664
220220 0 0
221221 0 0
222222 4.85097 0.325576
223223 24.9076 1.66794 0.833969 0.551811i 0.186063π-0.186063\pi
0.833969 + 0.551811i 0.186063π0.186063\pi
224224 12.8568 0.859034
225225 0 0
226226 −1.53690 −0.102233
227227 9.95509 0.660743 0.330371 0.943851i 0.392826π-0.392826\pi
0.330371 + 0.943851i 0.392826π0.392826\pi
228228 4.15633 0.275259
229229 −5.35026 −0.353555 −0.176778 0.984251i 0.556567π-0.556567\pi
−0.176778 + 0.984251i 0.556567π0.556567\pi
230230 0 0
231231 1.42548 0.0937900
232232 20.4182 1.34052
233233 10.7612 0.704987 0.352493 0.935814i 0.385334π-0.385334\pi
0.352493 + 0.935814i 0.385334π0.385334\pi
234234 0 0
235235 0 0
236236 −30.8749 −2.00979
237237 −1.08840 −0.0706990
238238 2.91160 0.188731
239239 11.8618 0.767274 0.383637 0.923484i 0.374671π-0.374671\pi
0.383637 + 0.923484i 0.374671π0.374671\pi
240240 0 0
241241 28.6253 1.84392 0.921959 0.387288i 0.126588π-0.126588\pi
0.921959 + 0.387288i 0.126588π0.126588\pi
242242 6.70545 0.431043
243243 11.6810 0.749337
244244 −9.11871 −0.583766
245245 0 0
246246 10.7005 0.682240
247247 0 0
248248 44.6434 2.83486
249249 1.84955 0.117211
250250 0 0
251251 −19.3865 −1.22366 −0.611831 0.790988i 0.709567π-0.709567\pi
−0.611831 + 0.790988i 0.709567π0.709567\pi
252252 −11.5066 −0.724847
253253 −23.8192 −1.49750
254254 11.4885 0.720852
255255 0 0
256256 8.08840 0.505525
257257 −22.8627 −1.42614 −0.713069 0.701094i 0.752695π-0.752695\pi
−0.713069 + 0.701094i 0.752695π0.752695\pi
258258 8.74543 0.544467
259259 3.03761 0.188748
260260 0 0
261261 −6.69464 −0.414388
262262 −2.23743 −0.138229
263263 −21.8822 −1.34932 −0.674658 0.738130i 0.735709π-0.735709\pi
−0.674658 + 0.738130i 0.735709π0.735709\pi
264264 14.9321 0.919005
265265 0 0
266266 3.61213 0.221474
267267 −1.33567 −0.0817419
268268 51.0191 3.11648
269269 22.7513 1.38717 0.693586 0.720374i 0.256030π-0.256030\pi
0.693586 + 0.720374i 0.256030π0.256030\pi
270270 0 0
271271 −0.123638 −0.00751049 −0.00375525 0.999993i 0.501195π-0.501195\pi
−0.00375525 + 0.999993i 0.501195π0.501195\pi
272272 16.5745 1.00498
273273 0 0
274274 −39.9610 −2.41413
275275 0 0
276276 −16.0811 −0.967969
277277 15.3503 0.922308 0.461154 0.887320i 0.347436π-0.347436\pi
0.461154 + 0.887320i 0.347436π0.347436\pi
278278 −22.5745 −1.35393
279279 −14.6375 −0.876325
280280 0 0
281281 −13.9248 −0.830683 −0.415341 0.909666i 0.636338π-0.636338\pi
−0.415341 + 0.909666i 0.636338π0.636338\pi
282282 4.11142 0.244831
283283 −20.3815 −1.21156 −0.605778 0.795634i 0.707138π-0.707138\pi
−0.605778 + 0.795634i 0.707138π0.707138\pi
284284 −44.1500 −2.61982
285285 0 0
286286 0 0
287287 6.70052 0.395519
288288 −44.1573 −2.60199
289289 −15.1768 −0.892753
290290 0 0
291291 −0.901754 −0.0528618
292292 −60.6820 −3.55114
293293 5.38058 0.314337 0.157168 0.987572i 0.449763π-0.449763\pi
0.157168 + 0.987572i 0.449763π0.449763\pi
294294 −8.17442 −0.476742
295295 0 0
296296 31.8192 1.84946
297297 −10.2012 −0.591935
298298 30.3634 1.75891
299299 0 0
300300 0 0
301301 5.47627 0.315647
302302 −37.4191 −2.15323
303303 5.05220 0.290241
304304 20.5623 1.17933
305305 0 0
306306 −10.0000 −0.571662
307307 −19.1695 −1.09406 −0.547031 0.837113i 0.684242π-0.684242\pi
−0.547031 + 0.837113i 0.684242π0.684242\pi
308308 15.2750 0.870376
309309 −7.39517 −0.420696
310310 0 0
311311 −25.2506 −1.43183 −0.715915 0.698187i 0.753990π-0.753990\pi
−0.715915 + 0.698187i 0.753990π0.753990\pi
312312 0 0
313313 −2.81194 −0.158940 −0.0794702 0.996837i 0.525323π-0.525323\pi
−0.0794702 + 0.996837i 0.525323π0.525323\pi
314314 −7.42548 −0.419044
315315 0 0
316316 −11.6629 −0.656090
317317 −23.7685 −1.33497 −0.667485 0.744624i 0.732629π-0.732629\pi
−0.667485 + 0.744624i 0.732629π0.732629\pi
318318 −7.38646 −0.414212
319319 8.88717 0.497586
320320 0 0
321321 −5.35614 −0.298951
322322 −13.9756 −0.778828
323323 2.26187 0.125854
324324 35.9380 1.99655
325325 0 0
326326 5.96968 0.330630
327327 −4.61354 −0.255129
328328 70.1886 3.87551
329329 2.57452 0.141938
330330 0 0
331331 11.8011 0.648649 0.324325 0.945946i 0.394863π-0.394863\pi
0.324325 + 0.945946i 0.394863π0.394863\pi
332332 19.8192 1.08772
333333 −10.4328 −0.571713
334334 −41.9814 −2.29712
335335 0 0
336336 4.76116 0.259742
337337 −16.1114 −0.877645 −0.438822 0.898574i 0.644604π-0.644604\pi
−0.438822 + 0.898574i 0.644604π0.644604\pi
338338 0 0
339339 −0.276454 −0.0150149
340340 0 0
341341 19.4314 1.05227
342342 −12.4060 −0.670838
343343 −10.7612 −0.581048
344344 57.3644 3.09288
345345 0 0
346346 68.4504 3.67992
347347 −27.4944 −1.47598 −0.737988 0.674814i 0.764224π-0.764224\pi
−0.737988 + 0.674814i 0.764224π0.764224\pi
348348 6.00000 0.321634
349349 17.6023 0.942228 0.471114 0.882072i 0.343852π-0.343852\pi
0.471114 + 0.882072i 0.343852π0.343852\pi
350350 0 0
351351 0 0
352352 58.6190 3.12440
353353 15.7685 0.839270 0.419635 0.907693i 0.362158π-0.362158\pi
0.419635 + 0.907693i 0.362158π0.362158\pi
354354 −7.70782 −0.409666
355355 0 0
356356 −14.3127 −0.758569
357357 0.523730 0.0277187
358358 32.4387 1.71444
359359 14.8242 0.782389 0.391195 0.920308i 0.372062π-0.372062\pi
0.391195 + 0.920308i 0.372062π0.372062\pi
360360 0 0
361361 −16.1939 −0.852312
362362 −7.30536 −0.383961
363363 1.20616 0.0633067
364364 0 0
365365 0 0
366366 −2.27645 −0.118992
367367 27.0313 1.41102 0.705510 0.708700i 0.250718π-0.250718\pi
0.705510 + 0.708700i 0.250718π0.250718\pi
368368 −79.5569 −4.14719
369369 −23.0132 −1.19802
370370 0 0
371371 −4.62530 −0.240134
372372 13.1187 0.680174
373373 −12.9525 −0.670657 −0.335329 0.942101i 0.608847π-0.608847\pi
−0.335329 + 0.942101i 0.608847π0.608847\pi
374374 13.2750 0.686436
375375 0 0
376376 26.9683 1.39078
377377 0 0
378378 −5.98541 −0.307856
379379 30.2858 1.55568 0.777840 0.628463i 0.216316π-0.216316\pi
0.777840 + 0.628463i 0.216316π0.216316\pi
380380 0 0
381381 2.06651 0.105871
382382 55.1754 2.82302
383383 −21.0943 −1.07787 −0.538934 0.842348i 0.681173π-0.681173\pi
−0.538934 + 0.842348i 0.681173π0.681173\pi
384384 7.97319 0.406880
385385 0 0
386386 −58.2882 −2.96679
387387 −18.8084 −0.956086
388388 −9.66291 −0.490560
389389 −6.77575 −0.343544 −0.171772 0.985137i 0.554949π-0.554949\pi
−0.171772 + 0.985137i 0.554949π0.554949\pi
390390 0 0
391391 −8.75131 −0.442573
392392 −53.6190 −2.70817
393393 −0.402462 −0.0203015
394394 5.35026 0.269542
395395 0 0
396396 −52.4626 −2.63635
397397 10.4690 0.525423 0.262711 0.964874i 0.415383π-0.415383\pi
0.262711 + 0.964874i 0.415383π0.415383\pi
398398 −44.8119 −2.24622
399399 0.649738 0.0325276
400400 0 0
401401 −5.01317 −0.250346 −0.125173 0.992135i 0.539949π-0.539949\pi
−0.125173 + 0.992135i 0.539949π0.539949\pi
402402 12.7367 0.635250
403403 0 0
404404 54.1378 2.69345
405405 0 0
406406 5.21440 0.258787
407407 13.8496 0.686497
408408 5.48612 0.271603
409409 14.3879 0.711435 0.355717 0.934594i 0.384237π-0.384237\pi
0.355717 + 0.934594i 0.384237π0.384237\pi
410410 0 0
411411 −7.18806 −0.354561
412412 −79.2443 −3.90408
413413 −4.82653 −0.237498
414414 47.9995 2.35905
415415 0 0
416416 0 0
417417 −4.06063 −0.198850
418418 16.4690 0.805524
419419 17.4617 0.853059 0.426529 0.904474i 0.359736π-0.359736\pi
0.426529 + 0.904474i 0.359736π0.359736\pi
420420 0 0
421421 −2.88717 −0.140712 −0.0703559 0.997522i 0.522414π-0.522414\pi
−0.0703559 + 0.997522i 0.522414π0.522414\pi
422422 −13.1128 −0.638323
423423 −8.84226 −0.429925
424424 −48.4504 −2.35296
425425 0 0
426426 −11.0219 −0.534012
427427 −1.42548 −0.0689840
428428 −57.3947 −2.77428
429429 0 0
430430 0 0
431431 −0.889535 −0.0428474 −0.0214237 0.999770i 0.506820π-0.506820\pi
−0.0214237 + 0.999770i 0.506820π0.506820\pi
432432 −34.0724 −1.63931
433433 25.2506 1.21347 0.606733 0.794906i 0.292480π-0.292480\pi
0.606733 + 0.794906i 0.292480π0.292480\pi
434434 11.4010 0.547268
435435 0 0
436436 −49.4372 −2.36761
437437 −10.8568 −0.519354
438438 −15.1490 −0.723849
439439 28.8119 1.37512 0.687560 0.726128i 0.258682π-0.258682\pi
0.687560 + 0.726128i 0.258682π0.258682\pi
440440 0 0
441441 17.5804 0.837162
442442 0 0
443443 −36.9805 −1.75700 −0.878498 0.477746i 0.841454π-0.841454\pi
−0.878498 + 0.477746i 0.841454π0.841454\pi
444444 9.35026 0.443744
445445 0 0
446446 66.6312 3.15508
447447 5.46168 0.258329
448448 14.6048 0.690013
449449 12.6859 0.598686 0.299343 0.954146i 0.403232π-0.403232\pi
0.299343 + 0.954146i 0.403232π0.403232\pi
450450 0 0
451451 30.5501 1.43855
452452 −2.96239 −0.139339
453453 −6.73084 −0.316242
454454 26.6312 1.24986
455455 0 0
456456 6.80606 0.318723
457457 −25.0494 −1.17176 −0.585880 0.810398i 0.699251π-0.699251\pi
−0.585880 + 0.810398i 0.699251π0.699251\pi
458458 −14.3127 −0.668786
459459 −3.74798 −0.174941
460460 0 0
461461 36.8872 1.71801 0.859003 0.511970i 0.171084π-0.171084\pi
0.859003 + 0.511970i 0.171084π0.171084\pi
462462 3.81336 0.177413
463463 −39.0191 −1.81337 −0.906685 0.421809i 0.861395π-0.861395\pi
−0.906685 + 0.421809i 0.861395π0.861395\pi
464464 29.6834 1.37802
465465 0 0
466466 28.7875 1.33356
467467 −32.7694 −1.51639 −0.758194 0.652029i 0.773918π-0.773918\pi
−0.758194 + 0.652029i 0.773918π0.773918\pi
468468 0 0
469469 7.97556 0.368277
470470 0 0
471471 −1.33567 −0.0615446
472472 −50.5583 −2.32714
473473 24.9683 1.14804
474474 −2.91160 −0.133734
475475 0 0
476476 5.61213 0.257231
477477 15.8858 0.727359
478478 31.7318 1.45138
479479 −16.8749 −0.771036 −0.385518 0.922700i 0.625977π-0.625977\pi
−0.385518 + 0.922700i 0.625977π0.625977\pi
480480 0 0
481481 0 0
482482 76.5764 3.48796
483483 −2.51388 −0.114386
484484 12.9248 0.587490
485485 0 0
486486 31.2482 1.41745
487487 −9.24472 −0.418918 −0.209459 0.977817i 0.567170π-0.567170\pi
−0.209459 + 0.977817i 0.567170π0.567170\pi
488488 −14.9321 −0.675943
489489 1.07381 0.0485593
490490 0 0
491491 −25.7499 −1.16208 −0.581038 0.813876i 0.697353π-0.697353\pi
−0.581038 + 0.813876i 0.697353π0.697353\pi
492492 20.6253 0.929860
493493 3.26519 0.147057
494494 0 0
495495 0 0
496496 64.9013 2.91415
497497 −6.90175 −0.309586
498498 4.94780 0.221716
499499 27.7015 1.24009 0.620044 0.784567i 0.287115π-0.287115\pi
0.620044 + 0.784567i 0.287115π0.287115\pi
500500 0 0
501501 −7.55149 −0.337376
502502 −51.8613 −2.31468
503503 −2.35519 −0.105013 −0.0525063 0.998621i 0.516721π-0.516721\pi
−0.0525063 + 0.998621i 0.516721π0.516721\pi
504504 −18.8423 −0.839301
505505 0 0
506506 −63.7196 −2.83268
507507 0 0
508508 22.1441 0.982486
509509 −21.5125 −0.953523 −0.476762 0.879033i 0.658190π-0.658190\pi
−0.476762 + 0.879033i 0.658190π0.658190\pi
510510 0 0
511511 −9.48612 −0.419641
512512 −11.5017 −0.508306
513513 −4.64974 −0.205291
514514 −61.1608 −2.69769
515515 0 0
516516 16.8568 0.742081
517517 11.7381 0.516243
518518 8.12601 0.357036
519519 12.3127 0.540465
520520 0 0
521521 37.7440 1.65360 0.826798 0.562499i 0.190160π-0.190160\pi
0.826798 + 0.562499i 0.190160π0.190160\pi
522522 −17.9090 −0.783858
523523 −23.7416 −1.03815 −0.519075 0.854729i 0.673723π-0.673723\pi
−0.519075 + 0.854729i 0.673723π0.673723\pi
524524 −4.31265 −0.188399
525525 0 0
526526 −58.5379 −2.55237
527527 7.13918 0.310988
528528 21.7078 0.944712
529529 19.0059 0.826343
530530 0 0
531531 16.5769 0.719376
532532 6.96239 0.301858
533533 0 0
534534 −3.57310 −0.154623
535535 0 0
536536 83.5447 3.60858
537537 5.83497 0.251797
538538 60.8627 2.62398
539539 −23.3380 −1.00524
540540 0 0
541541 −13.0376 −0.560531 −0.280265 0.959923i 0.590422π-0.590422\pi
−0.280265 + 0.959923i 0.590422π0.590422\pi
542542 −0.330749 −0.0142069
543543 −1.31406 −0.0563919
544544 21.5369 0.923387
545545 0 0
546546 0 0
547547 −8.43041 −0.360458 −0.180229 0.983625i 0.557684π-0.557684\pi
−0.180229 + 0.983625i 0.557684π0.557684\pi
548548 −77.0249 −3.29034
549549 4.89587 0.208951
550550 0 0
551551 4.05079 0.172569
552552 −26.3331 −1.12081
553553 −1.82321 −0.0775306
554554 41.0640 1.74464
555555 0 0
556556 −43.5125 −1.84534
557557 13.6932 0.580201 0.290100 0.956996i 0.406311π-0.406311\pi
0.290100 + 0.956996i 0.406311π0.406311\pi
558558 −39.1573 −1.65766
559559 0 0
560560 0 0
561561 2.38787 0.100816
562562 −37.2506 −1.57132
563563 8.86907 0.373787 0.186893 0.982380i 0.440158π-0.440158\pi
0.186893 + 0.982380i 0.440158π0.440158\pi
564564 7.92478 0.333693
565565 0 0
566566 −54.5233 −2.29178
567567 5.61801 0.235934
568568 −72.2965 −3.03349
569569 −32.7816 −1.37428 −0.687139 0.726526i 0.741134π-0.741134\pi
−0.687139 + 0.726526i 0.741134π0.741134\pi
570570 0 0
571571 40.2882 1.68601 0.843005 0.537906i 0.180785π-0.180785\pi
0.843005 + 0.537906i 0.180785π0.180785\pi
572572 0 0
573573 9.92478 0.414614
574574 17.9248 0.748166
575575 0 0
576576 −50.1608 −2.09003
577577 28.8568 1.20133 0.600663 0.799502i 0.294903π-0.294903\pi
0.600663 + 0.799502i 0.294903π0.294903\pi
578578 −40.5999 −1.68873
579579 −10.4847 −0.435729
580580 0 0
581581 3.09825 0.128537
582582 −2.41231 −0.0999935
583583 −21.0884 −0.873392
584584 −99.3679 −4.11187
585585 0 0
586586 14.3938 0.594600
587587 41.6786 1.72026 0.860131 0.510074i 0.170382π-0.170382\pi
0.860131 + 0.510074i 0.170382π0.170382\pi
588588 −15.7562 −0.649776
589589 8.85685 0.364940
590590 0 0
591591 0.962389 0.0395874
592592 46.2579 1.90119
593593 22.4993 0.923935 0.461968 0.886897i 0.347144π-0.347144\pi
0.461968 + 0.886897i 0.347144π0.347144\pi
594594 −27.2896 −1.11971
595595 0 0
596596 58.5256 2.39730
597597 −8.06063 −0.329900
598598 0 0
599599 4.15045 0.169583 0.0847913 0.996399i 0.472978π-0.472978\pi
0.0847913 + 0.996399i 0.472978π0.472978\pi
600600 0 0
601601 27.9248 1.13908 0.569538 0.821965i 0.307122π-0.307122\pi
0.569538 + 0.821965i 0.307122π0.307122\pi
602602 14.6497 0.597079
603603 −27.3923 −1.11550
604604 −72.1255 −2.93475
605605 0 0
606606 13.5153 0.549021
607607 −8.19489 −0.332620 −0.166310 0.986073i 0.553185π-0.553185\pi
−0.166310 + 0.986073i 0.553185π0.553185\pi
608608 26.7186 1.08358
609609 0.937951 0.0380077
610610 0 0
611611 0 0
612612 −19.2750 −0.779147
613613 33.1392 1.33848 0.669239 0.743047i 0.266620π-0.266620\pi
0.669239 + 0.743047i 0.266620π0.266620\pi
614614 −51.2809 −2.06953
615615 0 0
616616 25.0132 1.00781
617617 −29.0132 −1.16803 −0.584013 0.811744i 0.698518π-0.698518\pi
−0.584013 + 0.811744i 0.698518π0.698518\pi
618618 −19.7830 −0.795791
619619 −12.2134 −0.490900 −0.245450 0.969409i 0.578936π-0.578936\pi
−0.245450 + 0.969409i 0.578936π0.578936\pi
620620 0 0
621621 17.9902 0.721920
622622 −67.5487 −2.70845
623623 −2.23743 −0.0896406
624624 0 0
625625 0 0
626626 −7.52232 −0.300652
627627 2.96239 0.118306
628628 −14.3127 −0.571137
629629 5.08840 0.202888
630630 0 0
631631 1.22188 0.0486424 0.0243212 0.999704i 0.492258π-0.492258\pi
0.0243212 + 0.999704i 0.492258π0.492258\pi
632632 −19.0982 −0.759687
633633 −2.35870 −0.0937498
634634 −63.5837 −2.52523
635635 0 0
636636 −14.2374 −0.564551
637637 0 0
638638 23.7743 0.941235
639639 23.7043 0.937728
640640 0 0
641641 −22.1016 −0.872960 −0.436480 0.899714i 0.643775π-0.643775\pi
−0.436480 + 0.899714i 0.643775π0.643775\pi
642642 −14.3284 −0.565496
643643 11.6688 0.460172 0.230086 0.973170i 0.426099π-0.426099\pi
0.230086 + 0.973170i 0.426099π0.426099\pi
644644 −26.9380 −1.06150
645645 0 0
646646 6.05079 0.238065
647647 −11.9575 −0.470096 −0.235048 0.971984i 0.575525π-0.575525\pi
−0.235048 + 0.971984i 0.575525π0.575525\pi
648648 58.8491 2.31181
649649 −22.0059 −0.863806
650650 0 0
651651 2.05079 0.0803766
652652 11.5066 0.450633
653653 10.9986 0.430408 0.215204 0.976569i 0.430958π-0.430958\pi
0.215204 + 0.976569i 0.430958π0.430958\pi
654654 −12.3418 −0.482604
655655 0 0
656656 102.038 3.98392
657657 32.5804 1.27108
658658 6.88717 0.268490
659659 −2.63989 −0.102835 −0.0514177 0.998677i 0.516374π-0.516374\pi
−0.0514177 + 0.998677i 0.516374π0.516374\pi
660660 0 0
661661 −18.3028 −0.711896 −0.355948 0.934506i 0.615842π-0.615842\pi
−0.355948 + 0.934506i 0.615842π0.615842\pi
662662 31.5696 1.22699
663663 0 0
664664 32.4544 1.25947
665665 0 0
666666 −27.9090 −1.08145
667667 −15.6728 −0.606852
668668 −80.9194 −3.13087
669669 11.9854 0.463383
670670 0 0
671671 −6.49929 −0.250902
672672 6.18664 0.238655
673673 −6.71037 −0.258666 −0.129333 0.991601i 0.541284π-0.541284\pi
−0.129333 + 0.991601i 0.541284π0.541284\pi
674674 −43.1002 −1.66016
675675 0 0
676676 0 0
677677 1.57593 0.0605679 0.0302840 0.999541i 0.490359π-0.490359\pi
0.0302840 + 0.999541i 0.490359π0.490359\pi
678678 −0.739549 −0.0284022
679679 −1.51056 −0.0579698
680680 0 0
681681 4.79033 0.183566
682682 51.9814 1.99047
683683 15.1939 0.581380 0.290690 0.956817i 0.406115π-0.406115\pi
0.290690 + 0.956817i 0.406115π0.406115\pi
684684 −23.9126 −0.914320
685685 0 0
686686 −28.7875 −1.09911
687687 −2.57452 −0.0982239
688688 83.3947 3.17939
689689 0 0
690690 0 0
691691 18.7127 0.711866 0.355933 0.934511i 0.384163π-0.384163\pi
0.355933 + 0.934511i 0.384163π0.384163\pi
692692 131.938 5.01555
693693 −8.20123 −0.311539
694694 −73.5510 −2.79196
695695 0 0
696696 9.82512 0.372420
697697 11.2243 0.425149
698698 47.0884 1.78232
699699 5.17821 0.195858
700700 0 0
701701 24.3028 0.917904 0.458952 0.888461i 0.348225π-0.348225\pi
0.458952 + 0.888461i 0.348225π0.348225\pi
702702 0 0
703703 6.31265 0.238086
704704 66.5886 2.50965
705705 0 0
706706 42.1827 1.58757
707707 8.46310 0.318287
708708 −14.8568 −0.558355
709709 9.66291 0.362898 0.181449 0.983400i 0.441921π-0.441921\pi
0.181449 + 0.983400i 0.441921π0.441921\pi
710710 0 0
711711 6.26187 0.234838
712712 −23.4372 −0.878348
713713 −34.2677 −1.28334
714714 1.40105 0.0524329
715715 0 0
716716 62.5256 2.33669
717717 5.70782 0.213162
718718 39.6566 1.47997
719719 28.4142 1.05967 0.529836 0.848100i 0.322254π-0.322254\pi
0.529836 + 0.848100i 0.322254π0.322254\pi
720720 0 0
721721 −12.3879 −0.461349
722722 −43.3209 −1.61224
723723 13.7743 0.512273
724724 −14.0811 −0.523320
725725 0 0
726726 3.22662 0.119751
727727 34.8545 1.29268 0.646341 0.763049i 0.276299π-0.276299\pi
0.646341 + 0.763049i 0.276299π0.276299\pi
728728 0 0
729729 −15.2882 −0.566230
730730 0 0
731731 9.17347 0.339293
732732 −4.38787 −0.162180
733733 6.25202 0.230923 0.115462 0.993312i 0.463165π-0.463165\pi
0.115462 + 0.993312i 0.463165π0.463165\pi
734734 72.3122 2.66909
735735 0 0
736736 −103.376 −3.81050
737737 36.3634 1.33946
738738 −61.5633 −2.26617
739739 32.0846 1.18025 0.590126 0.807311i 0.299078π-0.299078\pi
0.590126 + 0.807311i 0.299078π0.299078\pi
740740 0 0
741741 0 0
742742 −12.3733 −0.454238
743743 −30.5442 −1.12056 −0.560279 0.828304i 0.689306π-0.689306\pi
−0.560279 + 0.828304i 0.689306π0.689306\pi
744744 21.4821 0.787574
745745 0 0
746746 −34.6497 −1.26862
747747 −10.6410 −0.389335
748748 25.5877 0.935579
749749 −8.97224 −0.327838
750750 0 0
751751 28.1622 1.02765 0.513827 0.857894i 0.328227π-0.328227\pi
0.513827 + 0.857894i 0.328227π0.328227\pi
752752 39.2057 1.42968
753753 −9.32865 −0.339955
754754 0 0
755755 0 0
756756 −11.5369 −0.419593
757757 −35.4109 −1.28703 −0.643515 0.765433i 0.722525π-0.722525\pi
−0.643515 + 0.765433i 0.722525π0.722525\pi
758758 81.0186 2.94273
759759 −11.4617 −0.416033
760760 0 0
761761 19.2388 0.697407 0.348704 0.937233i 0.386622π-0.386622\pi
0.348704 + 0.937233i 0.386622π0.386622\pi
762762 5.52820 0.200265
763763 −7.72829 −0.279783
764764 106.351 3.84764
765765 0 0
766766 −56.4299 −2.03890
767767 0 0
768768 3.89209 0.140444
769769 −48.9643 −1.76570 −0.882849 0.469657i 0.844378π-0.844378\pi
−0.882849 + 0.469657i 0.844378π0.844378\pi
770770 0 0
771771 −11.0014 −0.396206
772772 −112.351 −4.04359
773773 46.1681 1.66055 0.830275 0.557354i 0.188183π-0.188183\pi
0.830275 + 0.557354i 0.188183π0.188183\pi
774774 −50.3150 −1.80854
775775 0 0
776776 −15.8232 −0.568020
777777 1.46168 0.0524375
778778 −18.1260 −0.649849
779779 13.9248 0.498907
780780 0 0
781781 −31.4676 −1.12600
782782 −23.4109 −0.837172
783783 −6.71228 −0.239877
784784 −77.9497 −2.78392
785785 0 0
786786 −1.07664 −0.0384024
787787 −22.6458 −0.807234 −0.403617 0.914928i 0.632247π-0.632247\pi
−0.403617 + 0.914928i 0.632247π0.632247\pi
788788 10.3127 0.367373
789789 −10.5296 −0.374864
790790 0 0
791791 −0.463096 −0.0164658
792792 −85.9086 −3.05263
793793 0 0
794794 28.0059 0.993891
795795 0 0
796796 −86.3752 −3.06149
797797 −8.23743 −0.291785 −0.145892 0.989300i 0.546605π-0.546605\pi
−0.145892 + 0.989300i 0.546605π0.546605\pi
798798 1.73813 0.0615293
799799 4.31265 0.152571
800800 0 0
801801 7.68452 0.271519
802802 −13.4109 −0.473555
803803 −43.2506 −1.52628
804804 24.5501 0.865814
805805 0 0
806806 0 0
807807 10.9478 0.385381
808808 88.6516 3.11875
809809 44.1319 1.55159 0.775797 0.630982i 0.217348π-0.217348\pi
0.775797 + 0.630982i 0.217348π0.217348\pi
810810 0 0
811811 −22.6883 −0.796694 −0.398347 0.917235i 0.630416π-0.630416\pi
−0.398347 + 0.917235i 0.630416π0.630416\pi
812812 10.0508 0.352713
813813 −0.0594941 −0.00208655
814814 37.0494 1.29858
815815 0 0
816816 7.97556 0.279201
817817 11.3806 0.398156
818818 38.4894 1.34575
819819 0 0
820820 0 0
821821 50.2736 1.75456 0.877281 0.479978i 0.159355π-0.159355\pi
0.877281 + 0.479978i 0.159355π0.159355\pi
822822 −19.2290 −0.670688
823823 −5.13093 −0.178853 −0.0894265 0.995993i 0.528503π-0.528503\pi
−0.0894265 + 0.995993i 0.528503π0.528503\pi
824824 −129.764 −4.52054
825825 0 0
826826 −12.9116 −0.449252
827827 18.6946 0.650076 0.325038 0.945701i 0.394623π-0.394623\pi
0.325038 + 0.945701i 0.394623π0.394623\pi
828828 92.5193 3.21527
829829 −3.44121 −0.119518 −0.0597591 0.998213i 0.519033π-0.519033\pi
−0.0597591 + 0.998213i 0.519033π0.519033\pi
830830 0 0
831831 7.38646 0.256233
832832 0 0
833833 −8.57452 −0.297089
834834 −10.8627 −0.376146
835835 0 0
836836 31.7440 1.09789
837837 −14.6761 −0.507280
838838 46.7123 1.61365
839839 52.6248 1.81681 0.908406 0.418090i 0.137300π-0.137300\pi
0.908406 + 0.418090i 0.137300π0.137300\pi
840840 0 0
841841 −23.1524 −0.798357
842842 −7.72355 −0.266171
843843 −6.70052 −0.230778
844844 −25.2750 −0.870003
845845 0 0
846846 −23.6542 −0.813248
847847 2.02047 0.0694241
848848 −70.4358 −2.41878
849849 −9.80748 −0.336592
850850 0 0
851851 −24.4241 −0.837246
852852 −21.2447 −0.727832
853853 −6.31853 −0.216342 −0.108171 0.994132i 0.534499π-0.534499\pi
−0.108171 + 0.994132i 0.534499π0.534499\pi
854854 −3.81336 −0.130490
855855 0 0
856856 −93.9850 −3.21234
857857 0.775746 0.0264990 0.0132495 0.999912i 0.495782π-0.495782\pi
0.0132495 + 0.999912i 0.495782π0.495782\pi
858858 0 0
859859 3.24869 0.110844 0.0554220 0.998463i 0.482350π-0.482350\pi
0.0554220 + 0.998463i 0.482350π0.482350\pi
860860 0 0
861861 3.22425 0.109882
862862 −2.37962 −0.0810503
863863 −19.9208 −0.678112 −0.339056 0.940766i 0.610108π-0.610108\pi
−0.339056 + 0.940766i 0.610108π0.610108\pi
864864 −44.2736 −1.50622
865865 0 0
866866 67.5487 2.29540
867867 −7.30299 −0.248022
868868 21.9756 0.745899
869869 −8.31265 −0.281987
870870 0 0
871871 0 0
872872 −80.9544 −2.74146
873873 5.18806 0.175589
874874 −29.0435 −0.982411
875875 0 0
876876 −29.1998 −0.986570
877877 22.1378 0.747539 0.373770 0.927522i 0.378065π-0.378065\pi
0.373770 + 0.927522i 0.378065π0.378065\pi
878878 77.0757 2.60118
879879 2.58910 0.0873283
880880 0 0
881881 2.23155 0.0751828 0.0375914 0.999293i 0.488031π-0.488031\pi
0.0375914 + 0.999293i 0.488031π0.488031\pi
882882 47.0299 1.58358
883883 4.30440 0.144855 0.0724273 0.997374i 0.476925π-0.476925\pi
0.0724273 + 0.997374i 0.476925π0.476925\pi
884884 0 0
885885 0 0
886886 −98.9276 −3.32354
887887 −15.9330 −0.534979 −0.267489 0.963561i 0.586194π-0.586194\pi
−0.267489 + 0.963561i 0.586194π0.586194\pi
888888 15.3112 0.513811
889889 3.46168 0.116101
890890 0 0
891891 25.6145 0.858118
892892 128.432 4.30022
893893 5.35026 0.179040
894894 14.6107 0.488655
895895 0 0
896896 13.3561 0.446197
897897 0 0
898898 33.9365 1.13248
899899 12.7856 0.426423
900900 0 0
901901 −7.74798 −0.258123
902902 81.7255 2.72116
903903 2.63515 0.0876923
904904 −4.85097 −0.161341
905905 0 0
906906 −18.0059 −0.598205
907907 51.9086 1.72360 0.861798 0.507251i 0.169338π-0.169338\pi
0.861798 + 0.507251i 0.169338π0.169338\pi
908908 51.3317 1.70350
909909 −29.0668 −0.964085
910910 0 0
911911 −9.67750 −0.320630 −0.160315 0.987066i 0.551251π-0.551251\pi
−0.160315 + 0.987066i 0.551251π0.551251\pi
912912 9.89446 0.327638
913913 14.1260 0.467503
914914 −67.0103 −2.21651
915915 0 0
916916 −27.5877 −0.911523
917917 −0.674176 −0.0222632
918918 −10.0263 −0.330919
919919 13.5515 0.447022 0.223511 0.974701i 0.428248π-0.428248\pi
0.223511 + 0.974701i 0.428248π0.428248\pi
920920 0 0
921921 −9.22425 −0.303949
922922 98.6780 3.24979
923923 0 0
924924 7.35026 0.241806
925925 0 0
926926 −104.381 −3.43017
927927 42.5466 1.39741
928928 38.5705 1.26614
929929 9.44992 0.310042 0.155021 0.987911i 0.450455π-0.450455\pi
0.155021 + 0.987911i 0.450455π0.450455\pi
930930 0 0
931931 −10.6375 −0.348631
932932 55.4880 1.81757
933933 −12.1504 −0.397788
934934 −87.6625 −2.86840
935935 0 0
936936 0 0
937937 −16.0409 −0.524035 −0.262017 0.965063i 0.584388π-0.584388\pi
−0.262017 + 0.965063i 0.584388π0.584388\pi
938938 21.3357 0.696634
939939 −1.35309 −0.0441565
940940 0 0
941941 21.6747 0.706574 0.353287 0.935515i 0.385064π-0.385064\pi
0.353287 + 0.935515i 0.385064π0.385064\pi
942942 −3.57310 −0.116418
943943 −53.8759 −1.75444
944944 −73.5002 −2.39223
945945 0 0
946946 66.7934 2.17164
947947 −4.63118 −0.150493 −0.0752466 0.997165i 0.523974π-0.523974\pi
−0.0752466 + 0.997165i 0.523974π0.523974\pi
948948 −5.61213 −0.182273
949949 0 0
950950 0 0
951951 −11.4372 −0.370878
952952 9.18997 0.297849
953953 −26.2981 −0.851878 −0.425939 0.904752i 0.640056π-0.640056\pi
−0.425939 + 0.904752i 0.640056π0.640056\pi
954954 42.4965 1.37587
955955 0 0
956956 61.1632 1.97816
957957 4.27645 0.138238
958958 −45.1427 −1.45849
959959 −12.0409 −0.388822
960960 0 0
961961 −3.04491 −0.0982228
962962 0 0
963963 30.8155 0.993014
964964 147.601 4.75392
965965 0 0
966966 −6.72496 −0.216372
967967 −11.9405 −0.383981 −0.191990 0.981397i 0.561494π-0.561494\pi
−0.191990 + 0.981397i 0.561494π0.561494\pi
968968 21.1646 0.680255
969969 1.08840 0.0349643
970970 0 0
971971 30.1524 0.967635 0.483818 0.875169i 0.339250π-0.339250\pi
0.483818 + 0.875169i 0.339250π0.339250\pi
972972 60.2311 1.93191
973973 −6.80209 −0.218065
974974 −24.7308 −0.792427
975975 0 0
976976 −21.7078 −0.694850
977977 26.9321 0.861633 0.430817 0.902439i 0.358226π-0.358226\pi
0.430817 + 0.902439i 0.358226π0.358226\pi
978978 2.87258 0.0918549
979979 −10.2012 −0.326033
980980 0 0
981981 26.5431 0.847455
982982 −68.8843 −2.19819
983983 −20.5902 −0.656727 −0.328363 0.944551i 0.606497π-0.606497\pi
−0.328363 + 0.944551i 0.606497π0.606497\pi
984984 33.7743 1.07669
985985 0 0
986986 8.73481 0.278173
987987 1.23884 0.0394328
988988 0 0
989989 −44.0322 −1.40014
990990 0 0
991991 −48.1378 −1.52915 −0.764573 0.644537i 0.777050π-0.777050\pi
−0.764573 + 0.644537i 0.777050π0.777050\pi
992992 84.3327 2.67756
993993 5.67864 0.180206
994994 −18.4631 −0.585614
995995 0 0
996996 9.53690 0.302188
997997 −33.4255 −1.05860 −0.529298 0.848436i 0.677545π-0.677545\pi
−0.529298 + 0.848436i 0.677545π0.677545\pi
998998 74.1051 2.34576
999999 −10.4603 −0.330948
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bh.1.3 3
5.2 odd 4 845.2.b.c.339.6 6
5.3 odd 4 845.2.b.c.339.1 6
5.4 even 2 4225.2.a.ba.1.1 3
13.12 even 2 325.2.a.j.1.1 3
39.38 odd 2 2925.2.a.bj.1.3 3
52.51 odd 2 5200.2.a.cj.1.1 3
65.2 even 12 845.2.l.d.654.2 12
65.3 odd 12 845.2.n.g.529.6 12
65.7 even 12 845.2.l.e.699.5 12
65.8 even 4 845.2.d.b.844.6 6
65.12 odd 4 65.2.b.a.14.1 6
65.17 odd 12 845.2.n.f.484.1 12
65.18 even 4 845.2.d.a.844.2 6
65.22 odd 12 845.2.n.g.484.6 12
65.23 odd 12 845.2.n.f.529.1 12
65.28 even 12 845.2.l.e.654.5 12
65.32 even 12 845.2.l.d.699.1 12
65.33 even 12 845.2.l.d.699.2 12
65.37 even 12 845.2.l.e.654.6 12
65.38 odd 4 65.2.b.a.14.6 yes 6
65.42 odd 12 845.2.n.g.529.1 12
65.43 odd 12 845.2.n.f.484.6 12
65.47 even 4 845.2.d.a.844.1 6
65.48 odd 12 845.2.n.g.484.1 12
65.57 even 4 845.2.d.b.844.5 6
65.58 even 12 845.2.l.e.699.6 12
65.62 odd 12 845.2.n.f.529.6 12
65.63 even 12 845.2.l.d.654.1 12
65.64 even 2 325.2.a.k.1.3 3
195.38 even 4 585.2.c.b.469.1 6
195.77 even 4 585.2.c.b.469.6 6
195.194 odd 2 2925.2.a.bf.1.1 3
260.103 even 4 1040.2.d.c.209.3 6
260.207 even 4 1040.2.d.c.209.4 6
260.259 odd 2 5200.2.a.cb.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 65.12 odd 4
65.2.b.a.14.6 yes 6 65.38 odd 4
325.2.a.j.1.1 3 13.12 even 2
325.2.a.k.1.3 3 65.64 even 2
585.2.c.b.469.1 6 195.38 even 4
585.2.c.b.469.6 6 195.77 even 4
845.2.b.c.339.1 6 5.3 odd 4
845.2.b.c.339.6 6 5.2 odd 4
845.2.d.a.844.1 6 65.47 even 4
845.2.d.a.844.2 6 65.18 even 4
845.2.d.b.844.5 6 65.57 even 4
845.2.d.b.844.6 6 65.8 even 4
845.2.l.d.654.1 12 65.63 even 12
845.2.l.d.654.2 12 65.2 even 12
845.2.l.d.699.1 12 65.32 even 12
845.2.l.d.699.2 12 65.33 even 12
845.2.l.e.654.5 12 65.28 even 12
845.2.l.e.654.6 12 65.37 even 12
845.2.l.e.699.5 12 65.7 even 12
845.2.l.e.699.6 12 65.58 even 12
845.2.n.f.484.1 12 65.17 odd 12
845.2.n.f.484.6 12 65.43 odd 12
845.2.n.f.529.1 12 65.23 odd 12
845.2.n.f.529.6 12 65.62 odd 12
845.2.n.g.484.1 12 65.48 odd 12
845.2.n.g.484.6 12 65.22 odd 12
845.2.n.g.529.1 12 65.42 odd 12
845.2.n.g.529.6 12 65.3 odd 12
1040.2.d.c.209.3 6 260.103 even 4
1040.2.d.c.209.4 6 260.207 even 4
2925.2.a.bf.1.1 3 195.194 odd 2
2925.2.a.bj.1.3 3 39.38 odd 2
4225.2.a.ba.1.1 3 5.4 even 2
4225.2.a.bh.1.3 3 1.1 even 1 trivial
5200.2.a.cb.1.3 3 260.259 odd 2
5200.2.a.cj.1.1 3 52.51 odd 2