Properties

Label 4225.2.a.bh.1.3
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.67513 q^{2} +0.481194 q^{3} +5.15633 q^{4} +1.28726 q^{6} +0.806063 q^{7} +8.44358 q^{8} -2.76845 q^{9} +3.67513 q^{11} +2.48119 q^{12} +2.15633 q^{14} +12.2750 q^{16} +1.35026 q^{17} -7.40597 q^{18} +1.67513 q^{19} +0.387873 q^{21} +9.83146 q^{22} -6.48119 q^{23} +4.06300 q^{24} -2.77575 q^{27} +4.15633 q^{28} +2.41819 q^{29} +5.28726 q^{31} +15.9502 q^{32} +1.76845 q^{33} +3.61213 q^{34} -14.2750 q^{36} +3.76845 q^{37} +4.48119 q^{38} +8.31265 q^{41} +1.03761 q^{42} +6.79384 q^{43} +18.9502 q^{44} -17.3380 q^{46} +3.19394 q^{47} +5.90668 q^{48} -6.35026 q^{49} +0.649738 q^{51} -5.73813 q^{53} -7.42548 q^{54} +6.80606 q^{56} +0.806063 q^{57} +6.46898 q^{58} -5.98778 q^{59} -1.76845 q^{61} +14.1441 q^{62} -2.23155 q^{63} +18.1187 q^{64} +4.73084 q^{66} +9.89446 q^{67} +6.96239 q^{68} -3.11871 q^{69} -8.56230 q^{71} -23.3757 q^{72} -11.7685 q^{73} +10.0811 q^{74} +8.63752 q^{76} +2.96239 q^{77} -2.26187 q^{79} +6.96968 q^{81} +22.2374 q^{82} +3.84367 q^{83} +2.00000 q^{84} +18.1744 q^{86} +1.16362 q^{87} +31.0313 q^{88} -2.77575 q^{89} -33.4191 q^{92} +2.54420 q^{93} +8.54420 q^{94} +7.67513 q^{96} -1.87399 q^{97} -16.9878 q^{98} -10.1744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 4 q^{3} + 5 q^{4} - 2 q^{6} + 2 q^{7} + 9 q^{8} + 3 q^{9} + 6 q^{11} + 2 q^{12} - 4 q^{14} + 5 q^{16} - 6 q^{17} + 5 q^{18} + 2 q^{21} + 14 q^{22} - 14 q^{23} + 8 q^{24} - 10 q^{27} + 2 q^{28}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.67513 1.89160 0.945802 0.324745i \(-0.105279\pi\)
0.945802 + 0.324745i \(0.105279\pi\)
\(3\) 0.481194 0.277818 0.138909 0.990305i \(-0.455641\pi\)
0.138909 + 0.990305i \(0.455641\pi\)
\(4\) 5.15633 2.57816
\(5\) 0 0
\(6\) 1.28726 0.525521
\(7\) 0.806063 0.304663 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(8\) 8.44358 2.98526
\(9\) −2.76845 −0.922817
\(10\) 0 0
\(11\) 3.67513 1.10809 0.554047 0.832486i \(-0.313083\pi\)
0.554047 + 0.832486i \(0.313083\pi\)
\(12\) 2.48119 0.716259
\(13\) 0 0
\(14\) 2.15633 0.576302
\(15\) 0 0
\(16\) 12.2750 3.06876
\(17\) 1.35026 0.327487 0.163743 0.986503i \(-0.447643\pi\)
0.163743 + 0.986503i \(0.447643\pi\)
\(18\) −7.40597 −1.74560
\(19\) 1.67513 0.384301 0.192151 0.981365i \(-0.438454\pi\)
0.192151 + 0.981365i \(0.438454\pi\)
\(20\) 0 0
\(21\) 0.387873 0.0846409
\(22\) 9.83146 2.09607
\(23\) −6.48119 −1.35142 −0.675711 0.737166i \(-0.736163\pi\)
−0.675711 + 0.737166i \(0.736163\pi\)
\(24\) 4.06300 0.829357
\(25\) 0 0
\(26\) 0 0
\(27\) −2.77575 −0.534193
\(28\) 4.15633 0.785472
\(29\) 2.41819 0.449047 0.224523 0.974469i \(-0.427917\pi\)
0.224523 + 0.974469i \(0.427917\pi\)
\(30\) 0 0
\(31\) 5.28726 0.949620 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(32\) 15.9502 2.81962
\(33\) 1.76845 0.307848
\(34\) 3.61213 0.619475
\(35\) 0 0
\(36\) −14.2750 −2.37917
\(37\) 3.76845 0.619530 0.309765 0.950813i \(-0.399750\pi\)
0.309765 + 0.950813i \(0.399750\pi\)
\(38\) 4.48119 0.726946
\(39\) 0 0
\(40\) 0 0
\(41\) 8.31265 1.29822 0.649109 0.760695i \(-0.275142\pi\)
0.649109 + 0.760695i \(0.275142\pi\)
\(42\) 1.03761 0.160107
\(43\) 6.79384 1.03605 0.518026 0.855365i \(-0.326667\pi\)
0.518026 + 0.855365i \(0.326667\pi\)
\(44\) 18.9502 2.85685
\(45\) 0 0
\(46\) −17.3380 −2.55635
\(47\) 3.19394 0.465884 0.232942 0.972491i \(-0.425165\pi\)
0.232942 + 0.972491i \(0.425165\pi\)
\(48\) 5.90668 0.852556
\(49\) −6.35026 −0.907180
\(50\) 0 0
\(51\) 0.649738 0.0909816
\(52\) 0 0
\(53\) −5.73813 −0.788193 −0.394097 0.919069i \(-0.628943\pi\)
−0.394097 + 0.919069i \(0.628943\pi\)
\(54\) −7.42548 −1.01048
\(55\) 0 0
\(56\) 6.80606 0.909498
\(57\) 0.806063 0.106766
\(58\) 6.46898 0.849418
\(59\) −5.98778 −0.779543 −0.389771 0.920912i \(-0.627446\pi\)
−0.389771 + 0.920912i \(0.627446\pi\)
\(60\) 0 0
\(61\) −1.76845 −0.226427 −0.113214 0.993571i \(-0.536114\pi\)
−0.113214 + 0.993571i \(0.536114\pi\)
\(62\) 14.1441 1.79630
\(63\) −2.23155 −0.281149
\(64\) 18.1187 2.26484
\(65\) 0 0
\(66\) 4.73084 0.582326
\(67\) 9.89446 1.20880 0.604400 0.796681i \(-0.293413\pi\)
0.604400 + 0.796681i \(0.293413\pi\)
\(68\) 6.96239 0.844314
\(69\) −3.11871 −0.375449
\(70\) 0 0
\(71\) −8.56230 −1.01616 −0.508079 0.861311i \(-0.669644\pi\)
−0.508079 + 0.861311i \(0.669644\pi\)
\(72\) −23.3757 −2.75485
\(73\) −11.7685 −1.37739 −0.688697 0.725050i \(-0.741817\pi\)
−0.688697 + 0.725050i \(0.741817\pi\)
\(74\) 10.0811 1.17190
\(75\) 0 0
\(76\) 8.63752 0.990791
\(77\) 2.96239 0.337596
\(78\) 0 0
\(79\) −2.26187 −0.254480 −0.127240 0.991872i \(-0.540612\pi\)
−0.127240 + 0.991872i \(0.540612\pi\)
\(80\) 0 0
\(81\) 6.96968 0.774409
\(82\) 22.2374 2.45571
\(83\) 3.84367 0.421898 0.210949 0.977497i \(-0.432345\pi\)
0.210949 + 0.977497i \(0.432345\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 18.1744 1.95980
\(87\) 1.16362 0.124753
\(88\) 31.0313 3.30794
\(89\) −2.77575 −0.294229 −0.147114 0.989120i \(-0.546999\pi\)
−0.147114 + 0.989120i \(0.546999\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −33.4191 −3.48419
\(93\) 2.54420 0.263821
\(94\) 8.54420 0.881267
\(95\) 0 0
\(96\) 7.67513 0.783340
\(97\) −1.87399 −0.190275 −0.0951375 0.995464i \(-0.530329\pi\)
−0.0951375 + 0.995464i \(0.530329\pi\)
\(98\) −16.9878 −1.71603
\(99\) −10.1744 −1.02257
\(100\) 0 0
\(101\) 10.4993 1.04472 0.522359 0.852725i \(-0.325052\pi\)
0.522359 + 0.852725i \(0.325052\pi\)
\(102\) 1.73813 0.172101
\(103\) −15.3684 −1.51429 −0.757145 0.653247i \(-0.773406\pi\)
−0.757145 + 0.653247i \(0.773406\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −15.3503 −1.49095
\(107\) −11.1309 −1.07607 −0.538034 0.842923i \(-0.680833\pi\)
−0.538034 + 0.842923i \(0.680833\pi\)
\(108\) −14.3127 −1.37724
\(109\) −9.58769 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(110\) 0 0
\(111\) 1.81336 0.172116
\(112\) 9.89446 0.934939
\(113\) −0.574515 −0.0540459 −0.0270229 0.999635i \(-0.508603\pi\)
−0.0270229 + 0.999635i \(0.508603\pi\)
\(114\) 2.15633 0.201958
\(115\) 0 0
\(116\) 12.4690 1.15772
\(117\) 0 0
\(118\) −16.0181 −1.47459
\(119\) 1.08840 0.0997732
\(120\) 0 0
\(121\) 2.50659 0.227872
\(122\) −4.73084 −0.428310
\(123\) 4.00000 0.360668
\(124\) 27.2628 2.44827
\(125\) 0 0
\(126\) −5.96968 −0.531822
\(127\) 4.29455 0.381080 0.190540 0.981679i \(-0.438976\pi\)
0.190540 + 0.981679i \(0.438976\pi\)
\(128\) 16.5696 1.46456
\(129\) 3.26916 0.287833
\(130\) 0 0
\(131\) −0.836381 −0.0730749 −0.0365375 0.999332i \(-0.511633\pi\)
−0.0365375 + 0.999332i \(0.511633\pi\)
\(132\) 9.11871 0.793682
\(133\) 1.35026 0.117083
\(134\) 26.4690 2.28657
\(135\) 0 0
\(136\) 11.4010 0.977632
\(137\) −14.9380 −1.27624 −0.638118 0.769939i \(-0.720287\pi\)
−0.638118 + 0.769939i \(0.720287\pi\)
\(138\) −8.34297 −0.710201
\(139\) −8.43866 −0.715758 −0.357879 0.933768i \(-0.616500\pi\)
−0.357879 + 0.933768i \(0.616500\pi\)
\(140\) 0 0
\(141\) 1.53690 0.129431
\(142\) −22.9053 −1.92217
\(143\) 0 0
\(144\) −33.9829 −2.83190
\(145\) 0 0
\(146\) −31.4821 −2.60548
\(147\) −3.05571 −0.252031
\(148\) 19.4314 1.59725
\(149\) 11.3503 0.929850 0.464925 0.885350i \(-0.346081\pi\)
0.464925 + 0.885350i \(0.346081\pi\)
\(150\) 0 0
\(151\) −13.9878 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(152\) 14.1441 1.14724
\(153\) −3.73813 −0.302210
\(154\) 7.92478 0.638597
\(155\) 0 0
\(156\) 0 0
\(157\) −2.77575 −0.221529 −0.110764 0.993847i \(-0.535330\pi\)
−0.110764 + 0.993847i \(0.535330\pi\)
\(158\) −6.05079 −0.481375
\(159\) −2.76116 −0.218974
\(160\) 0 0
\(161\) −5.22425 −0.411729
\(162\) 18.6448 1.46487
\(163\) 2.23155 0.174788 0.0873942 0.996174i \(-0.472146\pi\)
0.0873942 + 0.996174i \(0.472146\pi\)
\(164\) 42.8627 3.34702
\(165\) 0 0
\(166\) 10.2823 0.798064
\(167\) −15.6932 −1.21438 −0.607189 0.794557i \(-0.707703\pi\)
−0.607189 + 0.794557i \(0.707703\pi\)
\(168\) 3.27504 0.252675
\(169\) 0 0
\(170\) 0 0
\(171\) −4.63752 −0.354640
\(172\) 35.0313 2.67111
\(173\) 25.5877 1.94540 0.972698 0.232075i \(-0.0745513\pi\)
0.972698 + 0.232075i \(0.0745513\pi\)
\(174\) 3.11283 0.235983
\(175\) 0 0
\(176\) 45.1124 3.40047
\(177\) −2.88129 −0.216571
\(178\) −7.42548 −0.556564
\(179\) 12.1260 0.906340 0.453170 0.891424i \(-0.350293\pi\)
0.453170 + 0.891424i \(0.350293\pi\)
\(180\) 0 0
\(181\) −2.73084 −0.202982 −0.101491 0.994836i \(-0.532361\pi\)
−0.101491 + 0.994836i \(0.532361\pi\)
\(182\) 0 0
\(183\) −0.850969 −0.0629054
\(184\) −54.7245 −4.03434
\(185\) 0 0
\(186\) 6.80606 0.499045
\(187\) 4.96239 0.362886
\(188\) 16.4690 1.20112
\(189\) −2.23743 −0.162749
\(190\) 0 0
\(191\) 20.6253 1.49239 0.746197 0.665725i \(-0.231878\pi\)
0.746197 + 0.665725i \(0.231878\pi\)
\(192\) 8.71862 0.629212
\(193\) −21.7889 −1.56840 −0.784200 0.620508i \(-0.786927\pi\)
−0.784200 + 0.620508i \(0.786927\pi\)
\(194\) −5.01317 −0.359925
\(195\) 0 0
\(196\) −32.7440 −2.33886
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) −27.2179 −1.93429
\(199\) −16.7513 −1.18747 −0.593734 0.804661i \(-0.702347\pi\)
−0.593734 + 0.804661i \(0.702347\pi\)
\(200\) 0 0
\(201\) 4.76116 0.335826
\(202\) 28.0870 1.97619
\(203\) 1.94921 0.136808
\(204\) 3.35026 0.234565
\(205\) 0 0
\(206\) −41.1124 −2.86443
\(207\) 17.9429 1.24712
\(208\) 0 0
\(209\) 6.15633 0.425842
\(210\) 0 0
\(211\) −4.90175 −0.337451 −0.168725 0.985663i \(-0.553965\pi\)
−0.168725 + 0.985663i \(0.553965\pi\)
\(212\) −29.5877 −2.03209
\(213\) −4.12013 −0.282307
\(214\) −29.7767 −2.03549
\(215\) 0 0
\(216\) −23.4372 −1.59470
\(217\) 4.26187 0.289314
\(218\) −25.6483 −1.73712
\(219\) −5.66291 −0.382664
\(220\) 0 0
\(221\) 0 0
\(222\) 4.85097 0.325576
\(223\) 24.9076 1.66794 0.833969 0.551811i \(-0.186063\pi\)
0.833969 + 0.551811i \(0.186063\pi\)
\(224\) 12.8568 0.859034
\(225\) 0 0
\(226\) −1.53690 −0.102233
\(227\) 9.95509 0.660743 0.330371 0.943851i \(-0.392826\pi\)
0.330371 + 0.943851i \(0.392826\pi\)
\(228\) 4.15633 0.275259
\(229\) −5.35026 −0.353555 −0.176778 0.984251i \(-0.556567\pi\)
−0.176778 + 0.984251i \(0.556567\pi\)
\(230\) 0 0
\(231\) 1.42548 0.0937900
\(232\) 20.4182 1.34052
\(233\) 10.7612 0.704987 0.352493 0.935814i \(-0.385334\pi\)
0.352493 + 0.935814i \(0.385334\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −30.8749 −2.00979
\(237\) −1.08840 −0.0706990
\(238\) 2.91160 0.188731
\(239\) 11.8618 0.767274 0.383637 0.923484i \(-0.374671\pi\)
0.383637 + 0.923484i \(0.374671\pi\)
\(240\) 0 0
\(241\) 28.6253 1.84392 0.921959 0.387288i \(-0.126588\pi\)
0.921959 + 0.387288i \(0.126588\pi\)
\(242\) 6.70545 0.431043
\(243\) 11.6810 0.749337
\(244\) −9.11871 −0.583766
\(245\) 0 0
\(246\) 10.7005 0.682240
\(247\) 0 0
\(248\) 44.6434 2.83486
\(249\) 1.84955 0.117211
\(250\) 0 0
\(251\) −19.3865 −1.22366 −0.611831 0.790988i \(-0.709567\pi\)
−0.611831 + 0.790988i \(0.709567\pi\)
\(252\) −11.5066 −0.724847
\(253\) −23.8192 −1.49750
\(254\) 11.4885 0.720852
\(255\) 0 0
\(256\) 8.08840 0.505525
\(257\) −22.8627 −1.42614 −0.713069 0.701094i \(-0.752695\pi\)
−0.713069 + 0.701094i \(0.752695\pi\)
\(258\) 8.74543 0.544467
\(259\) 3.03761 0.188748
\(260\) 0 0
\(261\) −6.69464 −0.414388
\(262\) −2.23743 −0.138229
\(263\) −21.8822 −1.34932 −0.674658 0.738130i \(-0.735709\pi\)
−0.674658 + 0.738130i \(0.735709\pi\)
\(264\) 14.9321 0.919005
\(265\) 0 0
\(266\) 3.61213 0.221474
\(267\) −1.33567 −0.0817419
\(268\) 51.0191 3.11648
\(269\) 22.7513 1.38717 0.693586 0.720374i \(-0.256030\pi\)
0.693586 + 0.720374i \(0.256030\pi\)
\(270\) 0 0
\(271\) −0.123638 −0.00751049 −0.00375525 0.999993i \(-0.501195\pi\)
−0.00375525 + 0.999993i \(0.501195\pi\)
\(272\) 16.5745 1.00498
\(273\) 0 0
\(274\) −39.9610 −2.41413
\(275\) 0 0
\(276\) −16.0811 −0.967969
\(277\) 15.3503 0.922308 0.461154 0.887320i \(-0.347436\pi\)
0.461154 + 0.887320i \(0.347436\pi\)
\(278\) −22.5745 −1.35393
\(279\) −14.6375 −0.876325
\(280\) 0 0
\(281\) −13.9248 −0.830683 −0.415341 0.909666i \(-0.636338\pi\)
−0.415341 + 0.909666i \(0.636338\pi\)
\(282\) 4.11142 0.244831
\(283\) −20.3815 −1.21156 −0.605778 0.795634i \(-0.707138\pi\)
−0.605778 + 0.795634i \(0.707138\pi\)
\(284\) −44.1500 −2.61982
\(285\) 0 0
\(286\) 0 0
\(287\) 6.70052 0.395519
\(288\) −44.1573 −2.60199
\(289\) −15.1768 −0.892753
\(290\) 0 0
\(291\) −0.901754 −0.0528618
\(292\) −60.6820 −3.55114
\(293\) 5.38058 0.314337 0.157168 0.987572i \(-0.449763\pi\)
0.157168 + 0.987572i \(0.449763\pi\)
\(294\) −8.17442 −0.476742
\(295\) 0 0
\(296\) 31.8192 1.84946
\(297\) −10.2012 −0.591935
\(298\) 30.3634 1.75891
\(299\) 0 0
\(300\) 0 0
\(301\) 5.47627 0.315647
\(302\) −37.4191 −2.15323
\(303\) 5.05220 0.290241
\(304\) 20.5623 1.17933
\(305\) 0 0
\(306\) −10.0000 −0.571662
\(307\) −19.1695 −1.09406 −0.547031 0.837113i \(-0.684242\pi\)
−0.547031 + 0.837113i \(0.684242\pi\)
\(308\) 15.2750 0.870376
\(309\) −7.39517 −0.420696
\(310\) 0 0
\(311\) −25.2506 −1.43183 −0.715915 0.698187i \(-0.753990\pi\)
−0.715915 + 0.698187i \(0.753990\pi\)
\(312\) 0 0
\(313\) −2.81194 −0.158940 −0.0794702 0.996837i \(-0.525323\pi\)
−0.0794702 + 0.996837i \(0.525323\pi\)
\(314\) −7.42548 −0.419044
\(315\) 0 0
\(316\) −11.6629 −0.656090
\(317\) −23.7685 −1.33497 −0.667485 0.744624i \(-0.732629\pi\)
−0.667485 + 0.744624i \(0.732629\pi\)
\(318\) −7.38646 −0.414212
\(319\) 8.88717 0.497586
\(320\) 0 0
\(321\) −5.35614 −0.298951
\(322\) −13.9756 −0.778828
\(323\) 2.26187 0.125854
\(324\) 35.9380 1.99655
\(325\) 0 0
\(326\) 5.96968 0.330630
\(327\) −4.61354 −0.255129
\(328\) 70.1886 3.87551
\(329\) 2.57452 0.141938
\(330\) 0 0
\(331\) 11.8011 0.648649 0.324325 0.945946i \(-0.394863\pi\)
0.324325 + 0.945946i \(0.394863\pi\)
\(332\) 19.8192 1.08772
\(333\) −10.4328 −0.571713
\(334\) −41.9814 −2.29712
\(335\) 0 0
\(336\) 4.76116 0.259742
\(337\) −16.1114 −0.877645 −0.438822 0.898574i \(-0.644604\pi\)
−0.438822 + 0.898574i \(0.644604\pi\)
\(338\) 0 0
\(339\) −0.276454 −0.0150149
\(340\) 0 0
\(341\) 19.4314 1.05227
\(342\) −12.4060 −0.670838
\(343\) −10.7612 −0.581048
\(344\) 57.3644 3.09288
\(345\) 0 0
\(346\) 68.4504 3.67992
\(347\) −27.4944 −1.47598 −0.737988 0.674814i \(-0.764224\pi\)
−0.737988 + 0.674814i \(0.764224\pi\)
\(348\) 6.00000 0.321634
\(349\) 17.6023 0.942228 0.471114 0.882072i \(-0.343852\pi\)
0.471114 + 0.882072i \(0.343852\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 58.6190 3.12440
\(353\) 15.7685 0.839270 0.419635 0.907693i \(-0.362158\pi\)
0.419635 + 0.907693i \(0.362158\pi\)
\(354\) −7.70782 −0.409666
\(355\) 0 0
\(356\) −14.3127 −0.758569
\(357\) 0.523730 0.0277187
\(358\) 32.4387 1.71444
\(359\) 14.8242 0.782389 0.391195 0.920308i \(-0.372062\pi\)
0.391195 + 0.920308i \(0.372062\pi\)
\(360\) 0 0
\(361\) −16.1939 −0.852312
\(362\) −7.30536 −0.383961
\(363\) 1.20616 0.0633067
\(364\) 0 0
\(365\) 0 0
\(366\) −2.27645 −0.118992
\(367\) 27.0313 1.41102 0.705510 0.708700i \(-0.250718\pi\)
0.705510 + 0.708700i \(0.250718\pi\)
\(368\) −79.5569 −4.14719
\(369\) −23.0132 −1.19802
\(370\) 0 0
\(371\) −4.62530 −0.240134
\(372\) 13.1187 0.680174
\(373\) −12.9525 −0.670657 −0.335329 0.942101i \(-0.608847\pi\)
−0.335329 + 0.942101i \(0.608847\pi\)
\(374\) 13.2750 0.686436
\(375\) 0 0
\(376\) 26.9683 1.39078
\(377\) 0 0
\(378\) −5.98541 −0.307856
\(379\) 30.2858 1.55568 0.777840 0.628463i \(-0.216316\pi\)
0.777840 + 0.628463i \(0.216316\pi\)
\(380\) 0 0
\(381\) 2.06651 0.105871
\(382\) 55.1754 2.82302
\(383\) −21.0943 −1.07787 −0.538934 0.842348i \(-0.681173\pi\)
−0.538934 + 0.842348i \(0.681173\pi\)
\(384\) 7.97319 0.406880
\(385\) 0 0
\(386\) −58.2882 −2.96679
\(387\) −18.8084 −0.956086
\(388\) −9.66291 −0.490560
\(389\) −6.77575 −0.343544 −0.171772 0.985137i \(-0.554949\pi\)
−0.171772 + 0.985137i \(0.554949\pi\)
\(390\) 0 0
\(391\) −8.75131 −0.442573
\(392\) −53.6190 −2.70817
\(393\) −0.402462 −0.0203015
\(394\) 5.35026 0.269542
\(395\) 0 0
\(396\) −52.4626 −2.63635
\(397\) 10.4690 0.525423 0.262711 0.964874i \(-0.415383\pi\)
0.262711 + 0.964874i \(0.415383\pi\)
\(398\) −44.8119 −2.24622
\(399\) 0.649738 0.0325276
\(400\) 0 0
\(401\) −5.01317 −0.250346 −0.125173 0.992135i \(-0.539949\pi\)
−0.125173 + 0.992135i \(0.539949\pi\)
\(402\) 12.7367 0.635250
\(403\) 0 0
\(404\) 54.1378 2.69345
\(405\) 0 0
\(406\) 5.21440 0.258787
\(407\) 13.8496 0.686497
\(408\) 5.48612 0.271603
\(409\) 14.3879 0.711435 0.355717 0.934594i \(-0.384237\pi\)
0.355717 + 0.934594i \(0.384237\pi\)
\(410\) 0 0
\(411\) −7.18806 −0.354561
\(412\) −79.2443 −3.90408
\(413\) −4.82653 −0.237498
\(414\) 47.9995 2.35905
\(415\) 0 0
\(416\) 0 0
\(417\) −4.06063 −0.198850
\(418\) 16.4690 0.805524
\(419\) 17.4617 0.853059 0.426529 0.904474i \(-0.359736\pi\)
0.426529 + 0.904474i \(0.359736\pi\)
\(420\) 0 0
\(421\) −2.88717 −0.140712 −0.0703559 0.997522i \(-0.522414\pi\)
−0.0703559 + 0.997522i \(0.522414\pi\)
\(422\) −13.1128 −0.638323
\(423\) −8.84226 −0.429925
\(424\) −48.4504 −2.35296
\(425\) 0 0
\(426\) −11.0219 −0.534012
\(427\) −1.42548 −0.0689840
\(428\) −57.3947 −2.77428
\(429\) 0 0
\(430\) 0 0
\(431\) −0.889535 −0.0428474 −0.0214237 0.999770i \(-0.506820\pi\)
−0.0214237 + 0.999770i \(0.506820\pi\)
\(432\) −34.0724 −1.63931
\(433\) 25.2506 1.21347 0.606733 0.794906i \(-0.292480\pi\)
0.606733 + 0.794906i \(0.292480\pi\)
\(434\) 11.4010 0.547268
\(435\) 0 0
\(436\) −49.4372 −2.36761
\(437\) −10.8568 −0.519354
\(438\) −15.1490 −0.723849
\(439\) 28.8119 1.37512 0.687560 0.726128i \(-0.258682\pi\)
0.687560 + 0.726128i \(0.258682\pi\)
\(440\) 0 0
\(441\) 17.5804 0.837162
\(442\) 0 0
\(443\) −36.9805 −1.75700 −0.878498 0.477746i \(-0.841454\pi\)
−0.878498 + 0.477746i \(0.841454\pi\)
\(444\) 9.35026 0.443744
\(445\) 0 0
\(446\) 66.6312 3.15508
\(447\) 5.46168 0.258329
\(448\) 14.6048 0.690013
\(449\) 12.6859 0.598686 0.299343 0.954146i \(-0.403232\pi\)
0.299343 + 0.954146i \(0.403232\pi\)
\(450\) 0 0
\(451\) 30.5501 1.43855
\(452\) −2.96239 −0.139339
\(453\) −6.73084 −0.316242
\(454\) 26.6312 1.24986
\(455\) 0 0
\(456\) 6.80606 0.318723
\(457\) −25.0494 −1.17176 −0.585880 0.810398i \(-0.699251\pi\)
−0.585880 + 0.810398i \(0.699251\pi\)
\(458\) −14.3127 −0.668786
\(459\) −3.74798 −0.174941
\(460\) 0 0
\(461\) 36.8872 1.71801 0.859003 0.511970i \(-0.171084\pi\)
0.859003 + 0.511970i \(0.171084\pi\)
\(462\) 3.81336 0.177413
\(463\) −39.0191 −1.81337 −0.906685 0.421809i \(-0.861395\pi\)
−0.906685 + 0.421809i \(0.861395\pi\)
\(464\) 29.6834 1.37802
\(465\) 0 0
\(466\) 28.7875 1.33356
\(467\) −32.7694 −1.51639 −0.758194 0.652029i \(-0.773918\pi\)
−0.758194 + 0.652029i \(0.773918\pi\)
\(468\) 0 0
\(469\) 7.97556 0.368277
\(470\) 0 0
\(471\) −1.33567 −0.0615446
\(472\) −50.5583 −2.32714
\(473\) 24.9683 1.14804
\(474\) −2.91160 −0.133734
\(475\) 0 0
\(476\) 5.61213 0.257231
\(477\) 15.8858 0.727359
\(478\) 31.7318 1.45138
\(479\) −16.8749 −0.771036 −0.385518 0.922700i \(-0.625977\pi\)
−0.385518 + 0.922700i \(0.625977\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 76.5764 3.48796
\(483\) −2.51388 −0.114386
\(484\) 12.9248 0.587490
\(485\) 0 0
\(486\) 31.2482 1.41745
\(487\) −9.24472 −0.418918 −0.209459 0.977817i \(-0.567170\pi\)
−0.209459 + 0.977817i \(0.567170\pi\)
\(488\) −14.9321 −0.675943
\(489\) 1.07381 0.0485593
\(490\) 0 0
\(491\) −25.7499 −1.16208 −0.581038 0.813876i \(-0.697353\pi\)
−0.581038 + 0.813876i \(0.697353\pi\)
\(492\) 20.6253 0.929860
\(493\) 3.26519 0.147057
\(494\) 0 0
\(495\) 0 0
\(496\) 64.9013 2.91415
\(497\) −6.90175 −0.309586
\(498\) 4.94780 0.221716
\(499\) 27.7015 1.24009 0.620044 0.784567i \(-0.287115\pi\)
0.620044 + 0.784567i \(0.287115\pi\)
\(500\) 0 0
\(501\) −7.55149 −0.337376
\(502\) −51.8613 −2.31468
\(503\) −2.35519 −0.105013 −0.0525063 0.998621i \(-0.516721\pi\)
−0.0525063 + 0.998621i \(0.516721\pi\)
\(504\) −18.8423 −0.839301
\(505\) 0 0
\(506\) −63.7196 −2.83268
\(507\) 0 0
\(508\) 22.1441 0.982486
\(509\) −21.5125 −0.953523 −0.476762 0.879033i \(-0.658190\pi\)
−0.476762 + 0.879033i \(0.658190\pi\)
\(510\) 0 0
\(511\) −9.48612 −0.419641
\(512\) −11.5017 −0.508306
\(513\) −4.64974 −0.205291
\(514\) −61.1608 −2.69769
\(515\) 0 0
\(516\) 16.8568 0.742081
\(517\) 11.7381 0.516243
\(518\) 8.12601 0.357036
\(519\) 12.3127 0.540465
\(520\) 0 0
\(521\) 37.7440 1.65360 0.826798 0.562499i \(-0.190160\pi\)
0.826798 + 0.562499i \(0.190160\pi\)
\(522\) −17.9090 −0.783858
\(523\) −23.7416 −1.03815 −0.519075 0.854729i \(-0.673723\pi\)
−0.519075 + 0.854729i \(0.673723\pi\)
\(524\) −4.31265 −0.188399
\(525\) 0 0
\(526\) −58.5379 −2.55237
\(527\) 7.13918 0.310988
\(528\) 21.7078 0.944712
\(529\) 19.0059 0.826343
\(530\) 0 0
\(531\) 16.5769 0.719376
\(532\) 6.96239 0.301858
\(533\) 0 0
\(534\) −3.57310 −0.154623
\(535\) 0 0
\(536\) 83.5447 3.60858
\(537\) 5.83497 0.251797
\(538\) 60.8627 2.62398
\(539\) −23.3380 −1.00524
\(540\) 0 0
\(541\) −13.0376 −0.560531 −0.280265 0.959923i \(-0.590422\pi\)
−0.280265 + 0.959923i \(0.590422\pi\)
\(542\) −0.330749 −0.0142069
\(543\) −1.31406 −0.0563919
\(544\) 21.5369 0.923387
\(545\) 0 0
\(546\) 0 0
\(547\) −8.43041 −0.360458 −0.180229 0.983625i \(-0.557684\pi\)
−0.180229 + 0.983625i \(0.557684\pi\)
\(548\) −77.0249 −3.29034
\(549\) 4.89587 0.208951
\(550\) 0 0
\(551\) 4.05079 0.172569
\(552\) −26.3331 −1.12081
\(553\) −1.82321 −0.0775306
\(554\) 41.0640 1.74464
\(555\) 0 0
\(556\) −43.5125 −1.84534
\(557\) 13.6932 0.580201 0.290100 0.956996i \(-0.406311\pi\)
0.290100 + 0.956996i \(0.406311\pi\)
\(558\) −39.1573 −1.65766
\(559\) 0 0
\(560\) 0 0
\(561\) 2.38787 0.100816
\(562\) −37.2506 −1.57132
\(563\) 8.86907 0.373787 0.186893 0.982380i \(-0.440158\pi\)
0.186893 + 0.982380i \(0.440158\pi\)
\(564\) 7.92478 0.333693
\(565\) 0 0
\(566\) −54.5233 −2.29178
\(567\) 5.61801 0.235934
\(568\) −72.2965 −3.03349
\(569\) −32.7816 −1.37428 −0.687139 0.726526i \(-0.741134\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(570\) 0 0
\(571\) 40.2882 1.68601 0.843005 0.537906i \(-0.180785\pi\)
0.843005 + 0.537906i \(0.180785\pi\)
\(572\) 0 0
\(573\) 9.92478 0.414614
\(574\) 17.9248 0.748166
\(575\) 0 0
\(576\) −50.1608 −2.09003
\(577\) 28.8568 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(578\) −40.5999 −1.68873
\(579\) −10.4847 −0.435729
\(580\) 0 0
\(581\) 3.09825 0.128537
\(582\) −2.41231 −0.0999935
\(583\) −21.0884 −0.873392
\(584\) −99.3679 −4.11187
\(585\) 0 0
\(586\) 14.3938 0.594600
\(587\) 41.6786 1.72026 0.860131 0.510074i \(-0.170382\pi\)
0.860131 + 0.510074i \(0.170382\pi\)
\(588\) −15.7562 −0.649776
\(589\) 8.85685 0.364940
\(590\) 0 0
\(591\) 0.962389 0.0395874
\(592\) 46.2579 1.90119
\(593\) 22.4993 0.923935 0.461968 0.886897i \(-0.347144\pi\)
0.461968 + 0.886897i \(0.347144\pi\)
\(594\) −27.2896 −1.11971
\(595\) 0 0
\(596\) 58.5256 2.39730
\(597\) −8.06063 −0.329900
\(598\) 0 0
\(599\) 4.15045 0.169583 0.0847913 0.996399i \(-0.472978\pi\)
0.0847913 + 0.996399i \(0.472978\pi\)
\(600\) 0 0
\(601\) 27.9248 1.13908 0.569538 0.821965i \(-0.307122\pi\)
0.569538 + 0.821965i \(0.307122\pi\)
\(602\) 14.6497 0.597079
\(603\) −27.3923 −1.11550
\(604\) −72.1255 −2.93475
\(605\) 0 0
\(606\) 13.5153 0.549021
\(607\) −8.19489 −0.332620 −0.166310 0.986073i \(-0.553185\pi\)
−0.166310 + 0.986073i \(0.553185\pi\)
\(608\) 26.7186 1.08358
\(609\) 0.937951 0.0380077
\(610\) 0 0
\(611\) 0 0
\(612\) −19.2750 −0.779147
\(613\) 33.1392 1.33848 0.669239 0.743047i \(-0.266620\pi\)
0.669239 + 0.743047i \(0.266620\pi\)
\(614\) −51.2809 −2.06953
\(615\) 0 0
\(616\) 25.0132 1.00781
\(617\) −29.0132 −1.16803 −0.584013 0.811744i \(-0.698518\pi\)
−0.584013 + 0.811744i \(0.698518\pi\)
\(618\) −19.7830 −0.795791
\(619\) −12.2134 −0.490900 −0.245450 0.969409i \(-0.578936\pi\)
−0.245450 + 0.969409i \(0.578936\pi\)
\(620\) 0 0
\(621\) 17.9902 0.721920
\(622\) −67.5487 −2.70845
\(623\) −2.23743 −0.0896406
\(624\) 0 0
\(625\) 0 0
\(626\) −7.52232 −0.300652
\(627\) 2.96239 0.118306
\(628\) −14.3127 −0.571137
\(629\) 5.08840 0.202888
\(630\) 0 0
\(631\) 1.22188 0.0486424 0.0243212 0.999704i \(-0.492258\pi\)
0.0243212 + 0.999704i \(0.492258\pi\)
\(632\) −19.0982 −0.759687
\(633\) −2.35870 −0.0937498
\(634\) −63.5837 −2.52523
\(635\) 0 0
\(636\) −14.2374 −0.564551
\(637\) 0 0
\(638\) 23.7743 0.941235
\(639\) 23.7043 0.937728
\(640\) 0 0
\(641\) −22.1016 −0.872960 −0.436480 0.899714i \(-0.643775\pi\)
−0.436480 + 0.899714i \(0.643775\pi\)
\(642\) −14.3284 −0.565496
\(643\) 11.6688 0.460172 0.230086 0.973170i \(-0.426099\pi\)
0.230086 + 0.973170i \(0.426099\pi\)
\(644\) −26.9380 −1.06150
\(645\) 0 0
\(646\) 6.05079 0.238065
\(647\) −11.9575 −0.470096 −0.235048 0.971984i \(-0.575525\pi\)
−0.235048 + 0.971984i \(0.575525\pi\)
\(648\) 58.8491 2.31181
\(649\) −22.0059 −0.863806
\(650\) 0 0
\(651\) 2.05079 0.0803766
\(652\) 11.5066 0.450633
\(653\) 10.9986 0.430408 0.215204 0.976569i \(-0.430958\pi\)
0.215204 + 0.976569i \(0.430958\pi\)
\(654\) −12.3418 −0.482604
\(655\) 0 0
\(656\) 102.038 3.98392
\(657\) 32.5804 1.27108
\(658\) 6.88717 0.268490
\(659\) −2.63989 −0.102835 −0.0514177 0.998677i \(-0.516374\pi\)
−0.0514177 + 0.998677i \(0.516374\pi\)
\(660\) 0 0
\(661\) −18.3028 −0.711896 −0.355948 0.934506i \(-0.615842\pi\)
−0.355948 + 0.934506i \(0.615842\pi\)
\(662\) 31.5696 1.22699
\(663\) 0 0
\(664\) 32.4544 1.25947
\(665\) 0 0
\(666\) −27.9090 −1.08145
\(667\) −15.6728 −0.606852
\(668\) −80.9194 −3.13087
\(669\) 11.9854 0.463383
\(670\) 0 0
\(671\) −6.49929 −0.250902
\(672\) 6.18664 0.238655
\(673\) −6.71037 −0.258666 −0.129333 0.991601i \(-0.541284\pi\)
−0.129333 + 0.991601i \(0.541284\pi\)
\(674\) −43.1002 −1.66016
\(675\) 0 0
\(676\) 0 0
\(677\) 1.57593 0.0605679 0.0302840 0.999541i \(-0.490359\pi\)
0.0302840 + 0.999541i \(0.490359\pi\)
\(678\) −0.739549 −0.0284022
\(679\) −1.51056 −0.0579698
\(680\) 0 0
\(681\) 4.79033 0.183566
\(682\) 51.9814 1.99047
\(683\) 15.1939 0.581380 0.290690 0.956817i \(-0.406115\pi\)
0.290690 + 0.956817i \(0.406115\pi\)
\(684\) −23.9126 −0.914320
\(685\) 0 0
\(686\) −28.7875 −1.09911
\(687\) −2.57452 −0.0982239
\(688\) 83.3947 3.17939
\(689\) 0 0
\(690\) 0 0
\(691\) 18.7127 0.711866 0.355933 0.934511i \(-0.384163\pi\)
0.355933 + 0.934511i \(0.384163\pi\)
\(692\) 131.938 5.01555
\(693\) −8.20123 −0.311539
\(694\) −73.5510 −2.79196
\(695\) 0 0
\(696\) 9.82512 0.372420
\(697\) 11.2243 0.425149
\(698\) 47.0884 1.78232
\(699\) 5.17821 0.195858
\(700\) 0 0
\(701\) 24.3028 0.917904 0.458952 0.888461i \(-0.348225\pi\)
0.458952 + 0.888461i \(0.348225\pi\)
\(702\) 0 0
\(703\) 6.31265 0.238086
\(704\) 66.5886 2.50965
\(705\) 0 0
\(706\) 42.1827 1.58757
\(707\) 8.46310 0.318287
\(708\) −14.8568 −0.558355
\(709\) 9.66291 0.362898 0.181449 0.983400i \(-0.441921\pi\)
0.181449 + 0.983400i \(0.441921\pi\)
\(710\) 0 0
\(711\) 6.26187 0.234838
\(712\) −23.4372 −0.878348
\(713\) −34.2677 −1.28334
\(714\) 1.40105 0.0524329
\(715\) 0 0
\(716\) 62.5256 2.33669
\(717\) 5.70782 0.213162
\(718\) 39.6566 1.47997
\(719\) 28.4142 1.05967 0.529836 0.848100i \(-0.322254\pi\)
0.529836 + 0.848100i \(0.322254\pi\)
\(720\) 0 0
\(721\) −12.3879 −0.461349
\(722\) −43.3209 −1.61224
\(723\) 13.7743 0.512273
\(724\) −14.0811 −0.523320
\(725\) 0 0
\(726\) 3.22662 0.119751
\(727\) 34.8545 1.29268 0.646341 0.763049i \(-0.276299\pi\)
0.646341 + 0.763049i \(0.276299\pi\)
\(728\) 0 0
\(729\) −15.2882 −0.566230
\(730\) 0 0
\(731\) 9.17347 0.339293
\(732\) −4.38787 −0.162180
\(733\) 6.25202 0.230923 0.115462 0.993312i \(-0.463165\pi\)
0.115462 + 0.993312i \(0.463165\pi\)
\(734\) 72.3122 2.66909
\(735\) 0 0
\(736\) −103.376 −3.81050
\(737\) 36.3634 1.33946
\(738\) −61.5633 −2.26617
\(739\) 32.0846 1.18025 0.590126 0.807311i \(-0.299078\pi\)
0.590126 + 0.807311i \(0.299078\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.3733 −0.454238
\(743\) −30.5442 −1.12056 −0.560279 0.828304i \(-0.689306\pi\)
−0.560279 + 0.828304i \(0.689306\pi\)
\(744\) 21.4821 0.787574
\(745\) 0 0
\(746\) −34.6497 −1.26862
\(747\) −10.6410 −0.389335
\(748\) 25.5877 0.935579
\(749\) −8.97224 −0.327838
\(750\) 0 0
\(751\) 28.1622 1.02765 0.513827 0.857894i \(-0.328227\pi\)
0.513827 + 0.857894i \(0.328227\pi\)
\(752\) 39.2057 1.42968
\(753\) −9.32865 −0.339955
\(754\) 0 0
\(755\) 0 0
\(756\) −11.5369 −0.419593
\(757\) −35.4109 −1.28703 −0.643515 0.765433i \(-0.722525\pi\)
−0.643515 + 0.765433i \(0.722525\pi\)
\(758\) 81.0186 2.94273
\(759\) −11.4617 −0.416033
\(760\) 0 0
\(761\) 19.2388 0.697407 0.348704 0.937233i \(-0.386622\pi\)
0.348704 + 0.937233i \(0.386622\pi\)
\(762\) 5.52820 0.200265
\(763\) −7.72829 −0.279783
\(764\) 106.351 3.84764
\(765\) 0 0
\(766\) −56.4299 −2.03890
\(767\) 0 0
\(768\) 3.89209 0.140444
\(769\) −48.9643 −1.76570 −0.882849 0.469657i \(-0.844378\pi\)
−0.882849 + 0.469657i \(0.844378\pi\)
\(770\) 0 0
\(771\) −11.0014 −0.396206
\(772\) −112.351 −4.04359
\(773\) 46.1681 1.66055 0.830275 0.557354i \(-0.188183\pi\)
0.830275 + 0.557354i \(0.188183\pi\)
\(774\) −50.3150 −1.80854
\(775\) 0 0
\(776\) −15.8232 −0.568020
\(777\) 1.46168 0.0524375
\(778\) −18.1260 −0.649849
\(779\) 13.9248 0.498907
\(780\) 0 0
\(781\) −31.4676 −1.12600
\(782\) −23.4109 −0.837172
\(783\) −6.71228 −0.239877
\(784\) −77.9497 −2.78392
\(785\) 0 0
\(786\) −1.07664 −0.0384024
\(787\) −22.6458 −0.807234 −0.403617 0.914928i \(-0.632247\pi\)
−0.403617 + 0.914928i \(0.632247\pi\)
\(788\) 10.3127 0.367373
\(789\) −10.5296 −0.374864
\(790\) 0 0
\(791\) −0.463096 −0.0164658
\(792\) −85.9086 −3.05263
\(793\) 0 0
\(794\) 28.0059 0.993891
\(795\) 0 0
\(796\) −86.3752 −3.06149
\(797\) −8.23743 −0.291785 −0.145892 0.989300i \(-0.546605\pi\)
−0.145892 + 0.989300i \(0.546605\pi\)
\(798\) 1.73813 0.0615293
\(799\) 4.31265 0.152571
\(800\) 0 0
\(801\) 7.68452 0.271519
\(802\) −13.4109 −0.473555
\(803\) −43.2506 −1.52628
\(804\) 24.5501 0.865814
\(805\) 0 0
\(806\) 0 0
\(807\) 10.9478 0.385381
\(808\) 88.6516 3.11875
\(809\) 44.1319 1.55159 0.775797 0.630982i \(-0.217348\pi\)
0.775797 + 0.630982i \(0.217348\pi\)
\(810\) 0 0
\(811\) −22.6883 −0.796694 −0.398347 0.917235i \(-0.630416\pi\)
−0.398347 + 0.917235i \(0.630416\pi\)
\(812\) 10.0508 0.352713
\(813\) −0.0594941 −0.00208655
\(814\) 37.0494 1.29858
\(815\) 0 0
\(816\) 7.97556 0.279201
\(817\) 11.3806 0.398156
\(818\) 38.4894 1.34575
\(819\) 0 0
\(820\) 0 0
\(821\) 50.2736 1.75456 0.877281 0.479978i \(-0.159355\pi\)
0.877281 + 0.479978i \(0.159355\pi\)
\(822\) −19.2290 −0.670688
\(823\) −5.13093 −0.178853 −0.0894265 0.995993i \(-0.528503\pi\)
−0.0894265 + 0.995993i \(0.528503\pi\)
\(824\) −129.764 −4.52054
\(825\) 0 0
\(826\) −12.9116 −0.449252
\(827\) 18.6946 0.650076 0.325038 0.945701i \(-0.394623\pi\)
0.325038 + 0.945701i \(0.394623\pi\)
\(828\) 92.5193 3.21527
\(829\) −3.44121 −0.119518 −0.0597591 0.998213i \(-0.519033\pi\)
−0.0597591 + 0.998213i \(0.519033\pi\)
\(830\) 0 0
\(831\) 7.38646 0.256233
\(832\) 0 0
\(833\) −8.57452 −0.297089
\(834\) −10.8627 −0.376146
\(835\) 0 0
\(836\) 31.7440 1.09789
\(837\) −14.6761 −0.507280
\(838\) 46.7123 1.61365
\(839\) 52.6248 1.81681 0.908406 0.418090i \(-0.137300\pi\)
0.908406 + 0.418090i \(0.137300\pi\)
\(840\) 0 0
\(841\) −23.1524 −0.798357
\(842\) −7.72355 −0.266171
\(843\) −6.70052 −0.230778
\(844\) −25.2750 −0.870003
\(845\) 0 0
\(846\) −23.6542 −0.813248
\(847\) 2.02047 0.0694241
\(848\) −70.4358 −2.41878
\(849\) −9.80748 −0.336592
\(850\) 0 0
\(851\) −24.4241 −0.837246
\(852\) −21.2447 −0.727832
\(853\) −6.31853 −0.216342 −0.108171 0.994132i \(-0.534499\pi\)
−0.108171 + 0.994132i \(0.534499\pi\)
\(854\) −3.81336 −0.130490
\(855\) 0 0
\(856\) −93.9850 −3.21234
\(857\) 0.775746 0.0264990 0.0132495 0.999912i \(-0.495782\pi\)
0.0132495 + 0.999912i \(0.495782\pi\)
\(858\) 0 0
\(859\) 3.24869 0.110844 0.0554220 0.998463i \(-0.482350\pi\)
0.0554220 + 0.998463i \(0.482350\pi\)
\(860\) 0 0
\(861\) 3.22425 0.109882
\(862\) −2.37962 −0.0810503
\(863\) −19.9208 −0.678112 −0.339056 0.940766i \(-0.610108\pi\)
−0.339056 + 0.940766i \(0.610108\pi\)
\(864\) −44.2736 −1.50622
\(865\) 0 0
\(866\) 67.5487 2.29540
\(867\) −7.30299 −0.248022
\(868\) 21.9756 0.745899
\(869\) −8.31265 −0.281987
\(870\) 0 0
\(871\) 0 0
\(872\) −80.9544 −2.74146
\(873\) 5.18806 0.175589
\(874\) −29.0435 −0.982411
\(875\) 0 0
\(876\) −29.1998 −0.986570
\(877\) 22.1378 0.747539 0.373770 0.927522i \(-0.378065\pi\)
0.373770 + 0.927522i \(0.378065\pi\)
\(878\) 77.0757 2.60118
\(879\) 2.58910 0.0873283
\(880\) 0 0
\(881\) 2.23155 0.0751828 0.0375914 0.999293i \(-0.488031\pi\)
0.0375914 + 0.999293i \(0.488031\pi\)
\(882\) 47.0299 1.58358
\(883\) 4.30440 0.144855 0.0724273 0.997374i \(-0.476925\pi\)
0.0724273 + 0.997374i \(0.476925\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −98.9276 −3.32354
\(887\) −15.9330 −0.534979 −0.267489 0.963561i \(-0.586194\pi\)
−0.267489 + 0.963561i \(0.586194\pi\)
\(888\) 15.3112 0.513811
\(889\) 3.46168 0.116101
\(890\) 0 0
\(891\) 25.6145 0.858118
\(892\) 128.432 4.30022
\(893\) 5.35026 0.179040
\(894\) 14.6107 0.488655
\(895\) 0 0
\(896\) 13.3561 0.446197
\(897\) 0 0
\(898\) 33.9365 1.13248
\(899\) 12.7856 0.426423
\(900\) 0 0
\(901\) −7.74798 −0.258123
\(902\) 81.7255 2.72116
\(903\) 2.63515 0.0876923
\(904\) −4.85097 −0.161341
\(905\) 0 0
\(906\) −18.0059 −0.598205
\(907\) 51.9086 1.72360 0.861798 0.507251i \(-0.169338\pi\)
0.861798 + 0.507251i \(0.169338\pi\)
\(908\) 51.3317 1.70350
\(909\) −29.0668 −0.964085
\(910\) 0 0
\(911\) −9.67750 −0.320630 −0.160315 0.987066i \(-0.551251\pi\)
−0.160315 + 0.987066i \(0.551251\pi\)
\(912\) 9.89446 0.327638
\(913\) 14.1260 0.467503
\(914\) −67.0103 −2.21651
\(915\) 0 0
\(916\) −27.5877 −0.911523
\(917\) −0.674176 −0.0222632
\(918\) −10.0263 −0.330919
\(919\) 13.5515 0.447022 0.223511 0.974701i \(-0.428248\pi\)
0.223511 + 0.974701i \(0.428248\pi\)
\(920\) 0 0
\(921\) −9.22425 −0.303949
\(922\) 98.6780 3.24979
\(923\) 0 0
\(924\) 7.35026 0.241806
\(925\) 0 0
\(926\) −104.381 −3.43017
\(927\) 42.5466 1.39741
\(928\) 38.5705 1.26614
\(929\) 9.44992 0.310042 0.155021 0.987911i \(-0.450455\pi\)
0.155021 + 0.987911i \(0.450455\pi\)
\(930\) 0 0
\(931\) −10.6375 −0.348631
\(932\) 55.4880 1.81757
\(933\) −12.1504 −0.397788
\(934\) −87.6625 −2.86840
\(935\) 0 0
\(936\) 0 0
\(937\) −16.0409 −0.524035 −0.262017 0.965063i \(-0.584388\pi\)
−0.262017 + 0.965063i \(0.584388\pi\)
\(938\) 21.3357 0.696634
\(939\) −1.35309 −0.0441565
\(940\) 0 0
\(941\) 21.6747 0.706574 0.353287 0.935515i \(-0.385064\pi\)
0.353287 + 0.935515i \(0.385064\pi\)
\(942\) −3.57310 −0.116418
\(943\) −53.8759 −1.75444
\(944\) −73.5002 −2.39223
\(945\) 0 0
\(946\) 66.7934 2.17164
\(947\) −4.63118 −0.150493 −0.0752466 0.997165i \(-0.523974\pi\)
−0.0752466 + 0.997165i \(0.523974\pi\)
\(948\) −5.61213 −0.182273
\(949\) 0 0
\(950\) 0 0
\(951\) −11.4372 −0.370878
\(952\) 9.18997 0.297849
\(953\) −26.2981 −0.851878 −0.425939 0.904752i \(-0.640056\pi\)
−0.425939 + 0.904752i \(0.640056\pi\)
\(954\) 42.4965 1.37587
\(955\) 0 0
\(956\) 61.1632 1.97816
\(957\) 4.27645 0.138238
\(958\) −45.1427 −1.45849
\(959\) −12.0409 −0.388822
\(960\) 0 0
\(961\) −3.04491 −0.0982228
\(962\) 0 0
\(963\) 30.8155 0.993014
\(964\) 147.601 4.75392
\(965\) 0 0
\(966\) −6.72496 −0.216372
\(967\) −11.9405 −0.383981 −0.191990 0.981397i \(-0.561494\pi\)
−0.191990 + 0.981397i \(0.561494\pi\)
\(968\) 21.1646 0.680255
\(969\) 1.08840 0.0349643
\(970\) 0 0
\(971\) 30.1524 0.967635 0.483818 0.875169i \(-0.339250\pi\)
0.483818 + 0.875169i \(0.339250\pi\)
\(972\) 60.2311 1.93191
\(973\) −6.80209 −0.218065
\(974\) −24.7308 −0.792427
\(975\) 0 0
\(976\) −21.7078 −0.694850
\(977\) 26.9321 0.861633 0.430817 0.902439i \(-0.358226\pi\)
0.430817 + 0.902439i \(0.358226\pi\)
\(978\) 2.87258 0.0918549
\(979\) −10.2012 −0.326033
\(980\) 0 0
\(981\) 26.5431 0.847455
\(982\) −68.8843 −2.19819
\(983\) −20.5902 −0.656727 −0.328363 0.944551i \(-0.606497\pi\)
−0.328363 + 0.944551i \(0.606497\pi\)
\(984\) 33.7743 1.07669
\(985\) 0 0
\(986\) 8.73481 0.278173
\(987\) 1.23884 0.0394328
\(988\) 0 0
\(989\) −44.0322 −1.40014
\(990\) 0 0
\(991\) −48.1378 −1.52915 −0.764573 0.644537i \(-0.777050\pi\)
−0.764573 + 0.644537i \(0.777050\pi\)
\(992\) 84.3327 2.67756
\(993\) 5.67864 0.180206
\(994\) −18.4631 −0.585614
\(995\) 0 0
\(996\) 9.53690 0.302188
\(997\) −33.4255 −1.05860 −0.529298 0.848436i \(-0.677545\pi\)
−0.529298 + 0.848436i \(0.677545\pi\)
\(998\) 74.1051 2.34576
\(999\) −10.4603 −0.330948
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bh.1.3 3
5.2 odd 4 845.2.b.c.339.6 6
5.3 odd 4 845.2.b.c.339.1 6
5.4 even 2 4225.2.a.ba.1.1 3
13.12 even 2 325.2.a.j.1.1 3
39.38 odd 2 2925.2.a.bj.1.3 3
52.51 odd 2 5200.2.a.cj.1.1 3
65.2 even 12 845.2.l.d.654.2 12
65.3 odd 12 845.2.n.g.529.6 12
65.7 even 12 845.2.l.e.699.5 12
65.8 even 4 845.2.d.b.844.6 6
65.12 odd 4 65.2.b.a.14.1 6
65.17 odd 12 845.2.n.f.484.1 12
65.18 even 4 845.2.d.a.844.2 6
65.22 odd 12 845.2.n.g.484.6 12
65.23 odd 12 845.2.n.f.529.1 12
65.28 even 12 845.2.l.e.654.5 12
65.32 even 12 845.2.l.d.699.1 12
65.33 even 12 845.2.l.d.699.2 12
65.37 even 12 845.2.l.e.654.6 12
65.38 odd 4 65.2.b.a.14.6 yes 6
65.42 odd 12 845.2.n.g.529.1 12
65.43 odd 12 845.2.n.f.484.6 12
65.47 even 4 845.2.d.a.844.1 6
65.48 odd 12 845.2.n.g.484.1 12
65.57 even 4 845.2.d.b.844.5 6
65.58 even 12 845.2.l.e.699.6 12
65.62 odd 12 845.2.n.f.529.6 12
65.63 even 12 845.2.l.d.654.1 12
65.64 even 2 325.2.a.k.1.3 3
195.38 even 4 585.2.c.b.469.1 6
195.77 even 4 585.2.c.b.469.6 6
195.194 odd 2 2925.2.a.bf.1.1 3
260.103 even 4 1040.2.d.c.209.3 6
260.207 even 4 1040.2.d.c.209.4 6
260.259 odd 2 5200.2.a.cb.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 65.12 odd 4
65.2.b.a.14.6 yes 6 65.38 odd 4
325.2.a.j.1.1 3 13.12 even 2
325.2.a.k.1.3 3 65.64 even 2
585.2.c.b.469.1 6 195.38 even 4
585.2.c.b.469.6 6 195.77 even 4
845.2.b.c.339.1 6 5.3 odd 4
845.2.b.c.339.6 6 5.2 odd 4
845.2.d.a.844.1 6 65.47 even 4
845.2.d.a.844.2 6 65.18 even 4
845.2.d.b.844.5 6 65.57 even 4
845.2.d.b.844.6 6 65.8 even 4
845.2.l.d.654.1 12 65.63 even 12
845.2.l.d.654.2 12 65.2 even 12
845.2.l.d.699.1 12 65.32 even 12
845.2.l.d.699.2 12 65.33 even 12
845.2.l.e.654.5 12 65.28 even 12
845.2.l.e.654.6 12 65.37 even 12
845.2.l.e.699.5 12 65.7 even 12
845.2.l.e.699.6 12 65.58 even 12
845.2.n.f.484.1 12 65.17 odd 12
845.2.n.f.484.6 12 65.43 odd 12
845.2.n.f.529.1 12 65.23 odd 12
845.2.n.f.529.6 12 65.62 odd 12
845.2.n.g.484.1 12 65.48 odd 12
845.2.n.g.484.6 12 65.22 odd 12
845.2.n.g.529.1 12 65.42 odd 12
845.2.n.g.529.6 12 65.3 odd 12
1040.2.d.c.209.3 6 260.103 even 4
1040.2.d.c.209.4 6 260.207 even 4
2925.2.a.bf.1.1 3 195.194 odd 2
2925.2.a.bj.1.3 3 39.38 odd 2
4225.2.a.ba.1.1 3 5.4 even 2
4225.2.a.bh.1.3 3 1.1 even 1 trivial
5200.2.a.cb.1.3 3 260.259 odd 2
5200.2.a.cj.1.1 3 52.51 odd 2