Properties

Label 2-1058-1.1-c1-0-33
Degree $2$
Conductor $1058$
Sign $1$
Analytic cond. $8.44817$
Root an. cond. $2.90657$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.37·3-s + 4-s + 4.07·5-s + 2.37·6-s − 1.94·7-s + 8-s + 2.64·9-s + 4.07·10-s − 2.44·11-s + 2.37·12-s + 1.35·13-s − 1.94·14-s + 9.67·15-s + 16-s − 5.09·17-s + 2.64·18-s − 3.55·19-s + 4.07·20-s − 4.62·21-s − 2.44·22-s + 2.37·24-s + 11.5·25-s + 1.35·26-s − 0.846·27-s − 1.94·28-s − 4.40·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.37·3-s + 0.5·4-s + 1.82·5-s + 0.969·6-s − 0.735·7-s + 0.353·8-s + 0.881·9-s + 1.28·10-s − 0.738·11-s + 0.685·12-s + 0.376·13-s − 0.519·14-s + 2.49·15-s + 0.250·16-s − 1.23·17-s + 0.623·18-s − 0.815·19-s + 0.910·20-s − 1.00·21-s − 0.522·22-s + 0.484·24-s + 2.31·25-s + 0.266·26-s − 0.162·27-s − 0.367·28-s − 0.817·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1058\)    =    \(2 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(8.44817\)
Root analytic conductor: \(2.90657\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1058,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.490524645\)
\(L(\frac12)\) \(\approx\) \(4.490524645\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
23 \( 1 \)
good3 \( 1 - 2.37T + 3T^{2} \)
5 \( 1 - 4.07T + 5T^{2} \)
7 \( 1 + 1.94T + 7T^{2} \)
11 \( 1 + 2.44T + 11T^{2} \)
13 \( 1 - 1.35T + 13T^{2} \)
17 \( 1 + 5.09T + 17T^{2} \)
19 \( 1 + 3.55T + 19T^{2} \)
29 \( 1 + 4.40T + 29T^{2} \)
31 \( 1 - 3.46T + 31T^{2} \)
37 \( 1 - 1.94T + 37T^{2} \)
41 \( 1 + 5.57T + 41T^{2} \)
43 \( 1 + 1.63T + 43T^{2} \)
47 \( 1 + 2.29T + 47T^{2} \)
53 \( 1 - 8.84T + 53T^{2} \)
59 \( 1 - 14.3T + 59T^{2} \)
61 \( 1 - 5.96T + 61T^{2} \)
67 \( 1 + 8.83T + 67T^{2} \)
71 \( 1 + 13.9T + 71T^{2} \)
73 \( 1 + 4.92T + 73T^{2} \)
79 \( 1 + 7.06T + 79T^{2} \)
83 \( 1 + 4.96T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 - 8.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.986716168501808741683154296041, −8.969702442961656440461244141049, −8.560107715359345216361405801634, −7.23698678145384824922411227322, −6.39121347154709170576232238340, −5.72561776927678829548178726215, −4.61236107001189228301521193477, −3.38831153216863246886020998700, −2.49484509572493128102453217616, −1.94415903866258520207210824530, 1.94415903866258520207210824530, 2.49484509572493128102453217616, 3.38831153216863246886020998700, 4.61236107001189228301521193477, 5.72561776927678829548178726215, 6.39121347154709170576232238340, 7.23698678145384824922411227322, 8.560107715359345216361405801634, 8.969702442961656440461244141049, 9.986716168501808741683154296041

Graph of the $Z$-function along the critical line