L(s) = 1 | + 2-s + 2.37·3-s + 4-s + 4.07·5-s + 2.37·6-s − 1.94·7-s + 8-s + 2.64·9-s + 4.07·10-s − 2.44·11-s + 2.37·12-s + 1.35·13-s − 1.94·14-s + 9.67·15-s + 16-s − 5.09·17-s + 2.64·18-s − 3.55·19-s + 4.07·20-s − 4.62·21-s − 2.44·22-s + 2.37·24-s + 11.5·25-s + 1.35·26-s − 0.846·27-s − 1.94·28-s − 4.40·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.37·3-s + 0.5·4-s + 1.82·5-s + 0.969·6-s − 0.735·7-s + 0.353·8-s + 0.881·9-s + 1.28·10-s − 0.738·11-s + 0.685·12-s + 0.376·13-s − 0.519·14-s + 2.49·15-s + 0.250·16-s − 1.23·17-s + 0.623·18-s − 0.815·19-s + 0.910·20-s − 1.00·21-s − 0.522·22-s + 0.484·24-s + 2.31·25-s + 0.266·26-s − 0.162·27-s − 0.367·28-s − 0.817·29-s + ⋯ |
Λ(s)=(=(1058s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1058s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.490524645 |
L(21) |
≈ |
4.490524645 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 23 | 1 |
good | 3 | 1−2.37T+3T2 |
| 5 | 1−4.07T+5T2 |
| 7 | 1+1.94T+7T2 |
| 11 | 1+2.44T+11T2 |
| 13 | 1−1.35T+13T2 |
| 17 | 1+5.09T+17T2 |
| 19 | 1+3.55T+19T2 |
| 29 | 1+4.40T+29T2 |
| 31 | 1−3.46T+31T2 |
| 37 | 1−1.94T+37T2 |
| 41 | 1+5.57T+41T2 |
| 43 | 1+1.63T+43T2 |
| 47 | 1+2.29T+47T2 |
| 53 | 1−8.84T+53T2 |
| 59 | 1−14.3T+59T2 |
| 61 | 1−5.96T+61T2 |
| 67 | 1+8.83T+67T2 |
| 71 | 1+13.9T+71T2 |
| 73 | 1+4.92T+73T2 |
| 79 | 1+7.06T+79T2 |
| 83 | 1+4.96T+83T2 |
| 89 | 1−16.0T+89T2 |
| 97 | 1−8.59T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.986716168501808741683154296041, −8.969702442961656440461244141049, −8.560107715359345216361405801634, −7.23698678145384824922411227322, −6.39121347154709170576232238340, −5.72561776927678829548178726215, −4.61236107001189228301521193477, −3.38831153216863246886020998700, −2.49484509572493128102453217616, −1.94415903866258520207210824530,
1.94415903866258520207210824530, 2.49484509572493128102453217616, 3.38831153216863246886020998700, 4.61236107001189228301521193477, 5.72561776927678829548178726215, 6.39121347154709170576232238340, 7.23698678145384824922411227322, 8.560107715359345216361405801634, 8.969702442961656440461244141049, 9.986716168501808741683154296041