Properties

Label 1058.2.a.n
Level $1058$
Weight $2$
Character orbit 1058.a
Self dual yes
Analytic conductor $8.448$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,2,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.44817253385\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{5} q^{3} + q^{4} + (\beta_{4} + \beta_{2}) q^{5} + \beta_{5} q^{6} + ( - \beta_{6} - \beta_{3} + \beta_{2}) q^{7} + q^{8} + (\beta_{5} - \beta_1 + 2) q^{9} + (\beta_{4} + \beta_{2}) q^{10}+ \cdots + ( - \beta_{6} - 2 \beta_{4} + \cdots + 5 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} + 20 q^{9} + 4 q^{12} + 12 q^{13} + 8 q^{16} + 20 q^{18} + 4 q^{24} + 32 q^{25} + 12 q^{26} + 40 q^{27} + 8 q^{32} - 12 q^{35} + 20 q^{36} - 36 q^{39}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 13\nu^{2} + 14\nu + 19 ) / 13 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6\nu^{7} - 21\nu^{6} - 131\nu^{5} + 380\nu^{4} + 889\nu^{3} - 1724\nu^{2} - 1845\nu + 1223 ) / 299 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{7} + 29\nu^{6} + 90\nu^{5} - 562\nu^{4} - 553\nu^{3} + 2855\nu^{2} + 1572\nu - 2196 ) / 299 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -8\nu^{7} + 28\nu^{6} + 190\nu^{5} - 545\nu^{4} - 1469\nu^{3} + 2912\nu^{2} + 3541\nu - 3371 ) / 299 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16\nu^{7} - 56\nu^{6} - 380\nu^{5} + 1090\nu^{4} + 2938\nu^{3} - 5525\nu^{2} - 7082\nu + 4649 ) / 299 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 16\nu^{7} - 56\nu^{6} - 380\nu^{5} + 1090\nu^{4} + 2938\nu^{3} - 5525\nu^{2} - 7381\nu + 4649 ) / 299 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 42\nu^{7} - 147\nu^{6} - 986\nu^{5} + 2821\nu^{4} + 7672\nu^{3} - 14230\nu^{2} - 19884\nu + 12287 ) / 299 \) Copy content Toggle raw display
\(\nu\)\(=\) \( -\beta_{6} + \beta_{5} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{4} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} - 13\beta_{6} + 10\beta_{5} + 3\beta_{4} - 2\beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{7} - 12\beta_{6} + 19\beta_{5} + 32\beta_{4} - 4\beta_{2} + 15\beta _1 + 82 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 47\beta_{7} - 200\beta_{6} + 122\beta_{5} + 75\beta_{4} - 21\beta_{2} + 56\beta _1 + 131 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 131\beta_{7} - 374\beta_{6} + 319\beta_{5} + 512\beta_{4} + 26\beta_{3} - 66\beta_{2} + 397\beta _1 + 1125 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 935\beta_{7} - 3297\beta_{6} + 1690\beta_{5} + 1533\beta_{4} + 91\beta_{3} - 90\beta_{2} + 1514\beta _1 + 2671 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.62472
−2.66000
0.556232
−3.30747
0.443768
4.30747
3.66000
2.62472
1.00000 −2.14236 1.00000 −3.04082 −2.14236 −4.44396 1.00000 1.58969 −3.04082
1.2 1.00000 −2.14236 1.00000 3.04082 −2.14236 4.44396 1.00000 1.58969 3.04082
1.3 1.00000 −1.37562 1.00000 −3.17513 −1.37562 3.35963 1.00000 −1.10767 −3.17513
1.4 1.00000 −1.37562 1.00000 3.17513 −1.37562 −3.35963 1.00000 −1.10767 3.17513
1.5 1.00000 2.37562 1.00000 −4.07171 2.37562 1.94542 1.00000 2.64357 −4.07171
1.6 1.00000 2.37562 1.00000 4.07171 2.37562 −1.94542 1.00000 2.64357 4.07171
1.7 1.00000 3.14236 1.00000 −0.305248 3.14236 3.02975 1.00000 6.87441 −0.305248
1.8 1.00000 3.14236 1.00000 0.305248 3.14236 −3.02975 1.00000 6.87441 0.305248
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.2.a.n 8
3.b odd 2 1 9522.2.a.ce 8
4.b odd 2 1 8464.2.a.cb 8
23.b odd 2 1 inner 1058.2.a.n 8
69.c even 2 1 9522.2.a.ce 8
92.b even 2 1 8464.2.a.cb 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.2.a.n 8 1.a even 1 1 trivial
1058.2.a.n 8 23.b odd 2 1 inner
8464.2.a.cb 8 4.b odd 2 1
8464.2.a.cb 8 92.b even 2 1
9522.2.a.ce 8 3.b odd 2 1
9522.2.a.ce 8 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{4} - 2T_{3}^{3} - 9T_{3}^{2} + 10T_{3} + 22 \) Copy content Toggle raw display
\( T_{5}^{8} - 36T_{5}^{6} + 417T_{5}^{4} - 1584T_{5}^{2} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 2 T^{3} - 9 T^{2} + \cdots + 22)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} - 36 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( T^{8} - 44 T^{6} + \cdots + 7744 \) Copy content Toggle raw display
$11$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 6 T^{3} - 3 T^{2} + \cdots - 48)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 96 T^{6} + \cdots + 125316 \) Copy content Toggle raw display
$19$ \( T^{8} - 56 T^{6} + \cdots + 21316 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} - 63 T^{2} + \cdots - 264)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} - 44 T^{6} + \cdots + 7744 \) Copy content Toggle raw display
$41$ \( (T^{4} - 6 T^{3} + \cdots + 384)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} - 164 T^{6} + \cdots + 30976 \) Copy content Toggle raw display
$47$ \( (T^{4} + 6 T^{3} + \cdots - 552)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} - 132 T^{6} + \cdots + 82944 \) Copy content Toggle raw display
$59$ \( (T^{4} - 12 T^{3} - 33 T^{2} + \cdots + 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} - 572 T^{6} + \cdots + 183439936 \) Copy content Toggle raw display
$67$ \( T^{8} - 116 T^{6} + \cdots + 38416 \) Copy content Toggle raw display
$71$ \( (T^{4} + 6 T^{3} + \cdots + 15864)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 6 T^{3} + \cdots + 1293)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} - 464 T^{6} + \cdots + 22429696 \) Copy content Toggle raw display
$83$ \( T^{8} - 84 T^{6} + \cdots + 69696 \) Copy content Toggle raw display
$89$ \( T^{8} - 360 T^{6} + \cdots + 527076 \) Copy content Toggle raw display
$97$ \( T^{8} - 224 T^{6} + \cdots + 662596 \) Copy content Toggle raw display
show more
show less