Properties

Label 1058.2.a.n
Level 10581058
Weight 22
Character orbit 1058.a
Self dual yes
Analytic conductor 8.4488.448
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,2,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1058=2232 1058 = 2 \cdot 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.448172533858.44817253385
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.819879542784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x722x6+80x5+151x4440x3298x2+532x146 x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+β5q3+q4+(β4+β2)q5+β5q6+(β6β3+β2)q7+q8+(β5β1+2)q9+(β4+β2)q10++(β62β4++5β2)q99+O(q100) q + q^{2} + \beta_{5} q^{3} + q^{4} + (\beta_{4} + \beta_{2}) q^{5} + \beta_{5} q^{6} + ( - \beta_{6} - \beta_{3} + \beta_{2}) q^{7} + q^{8} + (\beta_{5} - \beta_1 + 2) q^{9} + (\beta_{4} + \beta_{2}) q^{10}+ \cdots + ( - \beta_{6} - 2 \beta_{4} + \cdots + 5 \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q2+4q3+8q4+4q6+8q8+20q9+4q12+12q13+8q16+20q18+4q24+32q25+12q26+40q27+8q3212q35+20q3636q39++32q98+O(q100) 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} + 20 q^{9} + 4 q^{12} + 12 q^{13} + 8 q^{16} + 20 q^{18} + 4 q^{24} + 32 q^{25} + 12 q^{26} + 40 q^{27} + 8 q^{32} - 12 q^{35} + 20 q^{36} - 36 q^{39}+ \cdots + 32 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x722x6+80x5+151x4440x3298x2+532x146 x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 : Copy content Toggle raw display

β1\beta_{1}== (ν42ν313ν2+14ν+19)/13 ( \nu^{4} - 2\nu^{3} - 13\nu^{2} + 14\nu + 19 ) / 13 Copy content Toggle raw display
β2\beta_{2}== (6ν721ν6131ν5+380ν4+889ν31724ν21845ν+1223)/299 ( 6\nu^{7} - 21\nu^{6} - 131\nu^{5} + 380\nu^{4} + 889\nu^{3} - 1724\nu^{2} - 1845\nu + 1223 ) / 299 Copy content Toggle raw display
β3\beta_{3}== (5ν7+29ν6+90ν5562ν4553ν3+2855ν2+1572ν2196)/299 ( -5\nu^{7} + 29\nu^{6} + 90\nu^{5} - 562\nu^{4} - 553\nu^{3} + 2855\nu^{2} + 1572\nu - 2196 ) / 299 Copy content Toggle raw display
β4\beta_{4}== (8ν7+28ν6+190ν5545ν41469ν3+2912ν2+3541ν3371)/299 ( -8\nu^{7} + 28\nu^{6} + 190\nu^{5} - 545\nu^{4} - 1469\nu^{3} + 2912\nu^{2} + 3541\nu - 3371 ) / 299 Copy content Toggle raw display
β5\beta_{5}== (16ν756ν6380ν5+1090ν4+2938ν35525ν27082ν+4649)/299 ( 16\nu^{7} - 56\nu^{6} - 380\nu^{5} + 1090\nu^{4} + 2938\nu^{3} - 5525\nu^{2} - 7082\nu + 4649 ) / 299 Copy content Toggle raw display
β6\beta_{6}== (16ν756ν6380ν5+1090ν4+2938ν35525ν27381ν+4649)/299 ( 16\nu^{7} - 56\nu^{6} - 380\nu^{5} + 1090\nu^{4} + 2938\nu^{3} - 5525\nu^{2} - 7381\nu + 4649 ) / 299 Copy content Toggle raw display
β7\beta_{7}== (42ν7147ν6986ν5+2821ν4+7672ν314230ν219884ν+12287)/299 ( 42\nu^{7} - 147\nu^{6} - 986\nu^{5} + 2821\nu^{4} + 7672\nu^{3} - 14230\nu^{2} - 19884\nu + 12287 ) / 299 Copy content Toggle raw display
ν\nu== β6+β5 -\beta_{6} + \beta_{5} Copy content Toggle raw display
ν2\nu^{2}== β5+2β4+7 \beta_{5} + 2\beta_{4} + 7 Copy content Toggle raw display
ν3\nu^{3}== 2β713β6+10β5+3β42β2+β1+5 2\beta_{7} - 13\beta_{6} + 10\beta_{5} + 3\beta_{4} - 2\beta_{2} + \beta _1 + 5 Copy content Toggle raw display
ν4\nu^{4}== 4β712β6+19β5+32β44β2+15β1+82 4\beta_{7} - 12\beta_{6} + 19\beta_{5} + 32\beta_{4} - 4\beta_{2} + 15\beta _1 + 82 Copy content Toggle raw display
ν5\nu^{5}== 47β7200β6+122β5+75β421β2+56β1+131 47\beta_{7} - 200\beta_{6} + 122\beta_{5} + 75\beta_{4} - 21\beta_{2} + 56\beta _1 + 131 Copy content Toggle raw display
ν6\nu^{6}== 131β7374β6+319β5+512β4+26β366β2+397β1+1125 131\beta_{7} - 374\beta_{6} + 319\beta_{5} + 512\beta_{4} + 26\beta_{3} - 66\beta_{2} + 397\beta _1 + 1125 Copy content Toggle raw display
ν7\nu^{7}== 935β73297β6+1690β5+1533β4+91β390β2+1514β1+2671 935\beta_{7} - 3297\beta_{6} + 1690\beta_{5} + 1533\beta_{4} + 91\beta_{3} - 90\beta_{2} + 1514\beta _1 + 2671 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.62472
−2.66000
0.556232
−3.30747
0.443768
4.30747
3.66000
2.62472
1.00000 −2.14236 1.00000 −3.04082 −2.14236 −4.44396 1.00000 1.58969 −3.04082
1.2 1.00000 −2.14236 1.00000 3.04082 −2.14236 4.44396 1.00000 1.58969 3.04082
1.3 1.00000 −1.37562 1.00000 −3.17513 −1.37562 3.35963 1.00000 −1.10767 −3.17513
1.4 1.00000 −1.37562 1.00000 3.17513 −1.37562 −3.35963 1.00000 −1.10767 3.17513
1.5 1.00000 2.37562 1.00000 −4.07171 2.37562 1.94542 1.00000 2.64357 −4.07171
1.6 1.00000 2.37562 1.00000 4.07171 2.37562 −1.94542 1.00000 2.64357 4.07171
1.7 1.00000 3.14236 1.00000 −0.305248 3.14236 3.02975 1.00000 6.87441 −0.305248
1.8 1.00000 3.14236 1.00000 0.305248 3.14236 −3.02975 1.00000 6.87441 0.305248
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
2323 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.2.a.n 8
3.b odd 2 1 9522.2.a.ce 8
4.b odd 2 1 8464.2.a.cb 8
23.b odd 2 1 inner 1058.2.a.n 8
69.c even 2 1 9522.2.a.ce 8
92.b even 2 1 8464.2.a.cb 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.2.a.n 8 1.a even 1 1 trivial
1058.2.a.n 8 23.b odd 2 1 inner
8464.2.a.cb 8 4.b odd 2 1
8464.2.a.cb 8 92.b even 2 1
9522.2.a.ce 8 3.b odd 2 1
9522.2.a.ce 8 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1058))S_{2}^{\mathrm{new}}(\Gamma_0(1058)):

T342T339T32+10T3+22 T_{3}^{4} - 2T_{3}^{3} - 9T_{3}^{2} + 10T_{3} + 22 Copy content Toggle raw display
T5836T56+417T541584T52+144 T_{5}^{8} - 36T_{5}^{6} + 417T_{5}^{4} - 1584T_{5}^{2} + 144 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)8 (T - 1)^{8} Copy content Toggle raw display
33 (T42T39T2++22)2 (T^{4} - 2 T^{3} - 9 T^{2} + \cdots + 22)^{2} Copy content Toggle raw display
55 T836T6++144 T^{8} - 36 T^{6} + \cdots + 144 Copy content Toggle raw display
77 T844T6++7744 T^{8} - 44 T^{6} + \cdots + 7744 Copy content Toggle raw display
1111 (T26)4 (T^{2} - 6)^{4} Copy content Toggle raw display
1313 (T46T33T2+48)2 (T^{4} - 6 T^{3} - 3 T^{2} + \cdots - 48)^{2} Copy content Toggle raw display
1717 T896T6++125316 T^{8} - 96 T^{6} + \cdots + 125316 Copy content Toggle raw display
1919 T856T6++21316 T^{8} - 56 T^{6} + \cdots + 21316 Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 (T463T2+264)2 (T^{4} - 63 T^{2} + \cdots - 264)^{2} Copy content Toggle raw display
3131 (T212)4 (T^{2} - 12)^{4} Copy content Toggle raw display
3737 T844T6++7744 T^{8} - 44 T^{6} + \cdots + 7744 Copy content Toggle raw display
4141 (T46T3++384)2 (T^{4} - 6 T^{3} + \cdots + 384)^{2} Copy content Toggle raw display
4343 T8164T6++30976 T^{8} - 164 T^{6} + \cdots + 30976 Copy content Toggle raw display
4747 (T4+6T3+552)2 (T^{4} + 6 T^{3} + \cdots - 552)^{2} Copy content Toggle raw display
5353 T8132T6++82944 T^{8} - 132 T^{6} + \cdots + 82944 Copy content Toggle raw display
5959 (T412T333T2++6)2 (T^{4} - 12 T^{3} - 33 T^{2} + \cdots + 6)^{2} Copy content Toggle raw display
6161 T8572T6++183439936 T^{8} - 572 T^{6} + \cdots + 183439936 Copy content Toggle raw display
6767 T8116T6++38416 T^{8} - 116 T^{6} + \cdots + 38416 Copy content Toggle raw display
7171 (T4+6T3++15864)2 (T^{4} + 6 T^{3} + \cdots + 15864)^{2} Copy content Toggle raw display
7373 (T46T3++1293)2 (T^{4} - 6 T^{3} + \cdots + 1293)^{2} Copy content Toggle raw display
7979 T8464T6++22429696 T^{8} - 464 T^{6} + \cdots + 22429696 Copy content Toggle raw display
8383 T884T6++69696 T^{8} - 84 T^{6} + \cdots + 69696 Copy content Toggle raw display
8989 T8360T6++527076 T^{8} - 360 T^{6} + \cdots + 527076 Copy content Toggle raw display
9797 T8224T6++662596 T^{8} - 224 T^{6} + \cdots + 662596 Copy content Toggle raw display
show more
show less