L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1.86 + 3.23i)7-s + (2.73 − 4.73i)11-s + (−0.732 − 1.26i)13-s − 7.46·17-s − 2·19-s + (0.133 + 0.232i)23-s + (−0.499 + 0.866i)25-s + (4.23 − 7.33i)29-s + (1 + 1.73i)31-s + 3.73·35-s − 10.3·37-s + (−1.96 − 3.40i)41-s + (5.73 − 9.92i)43-s + (1.86 − 3.23i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.705 + 1.22i)7-s + (0.823 − 1.42i)11-s + (−0.203 − 0.351i)13-s − 1.81·17-s − 0.458·19-s + (0.0279 + 0.0483i)23-s + (−0.0999 + 0.173i)25-s + (0.785 − 1.36i)29-s + (0.179 + 0.311i)31-s + 0.630·35-s − 1.70·37-s + (−0.306 − 0.531i)41-s + (0.874 − 1.51i)43-s + (0.272 − 0.471i)47-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)(−0.642+0.766i)Λ(2−s)
Λ(s)=(=(1080s/2ΓC(s+1/2)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
1080
= 23⋅33⋅5
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
8.62384 |
Root analytic conductor: |
2.93663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1080(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1080, ( :1/2), −0.642+0.766i)
|
Particular Values
L(1) |
≈ |
0.6239491700 |
L(21) |
≈ |
0.6239491700 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(1.86−3.23i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.73+4.73i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.732+1.26i)T+(−6.5+11.2i)T2 |
| 17 | 1+7.46T+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+(−0.133−0.232i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.23+7.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−1−1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+10.3T+37T2 |
| 41 | 1+(1.96+3.40i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.73+9.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.86+3.23i)T+(−23.5−40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(3.19+5.53i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.767+1.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.86+8.42i)T+(−33.5+58.0i)T2 |
| 71 | 1+2.53T+71T2 |
| 73 | 1+6.92T+73T2 |
| 79 | 1+(4.26−7.39i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.40−2.42i)T+(−41.5−71.8i)T2 |
| 89 | 1+3.92T+89T2 |
| 97 | 1+(2.46−4.26i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.262335065073245434679554905090, −8.800841032470035177337475043023, −8.285992034444571829552907365256, −6.83705245089892691540218865825, −6.19260814852499841284979275302, −5.41357006252683573814325483531, −4.24335343207621674679514631466, −3.21750272487700664190464266937, −2.14573448771341936091070718137, −0.26708532578271374096514364939,
1.63568201241005898827871350411, 2.99607191168199366347394650917, 4.26584033104075387218673488810, 4.53209715680901776536111674003, 6.32687809797563987872703316573, 6.93366075905501565320244440845, 7.31039571917350120949383216461, 8.659583141626784836386454775798, 9.418917396316539074774174283799, 10.23142241934004645927209797399