L(s) = 1 | + 5·5-s + 11.6·7-s − 47.4·11-s + 84.2·13-s − 26.9·17-s − 152.·19-s − 177.·23-s + 25·25-s + 60.0·29-s − 92.1·31-s + 58.1·35-s − 221.·37-s + 115.·41-s + 383.·43-s + 317.·47-s − 207.·49-s − 257.·53-s − 237.·55-s − 642.·59-s − 662.·61-s + 421.·65-s + 597.·67-s − 500.·71-s + 989.·73-s − 552.·77-s − 517.·79-s − 605.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.627·7-s − 1.30·11-s + 1.79·13-s − 0.384·17-s − 1.83·19-s − 1.60·23-s + 0.200·25-s + 0.384·29-s − 0.533·31-s + 0.280·35-s − 0.985·37-s + 0.438·41-s + 1.36·43-s + 0.984·47-s − 0.605·49-s − 0.667·53-s − 0.582·55-s − 1.41·59-s − 1.38·61-s + 0.804·65-s + 1.08·67-s − 0.836·71-s + 1.58·73-s − 0.817·77-s − 0.737·79-s − 0.801·83-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1080s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−11.6T+343T2 |
| 11 | 1+47.4T+1.33e3T2 |
| 13 | 1−84.2T+2.19e3T2 |
| 17 | 1+26.9T+4.91e3T2 |
| 19 | 1+152.T+6.85e3T2 |
| 23 | 1+177.T+1.21e4T2 |
| 29 | 1−60.0T+2.43e4T2 |
| 31 | 1+92.1T+2.97e4T2 |
| 37 | 1+221.T+5.06e4T2 |
| 41 | 1−115.T+6.89e4T2 |
| 43 | 1−383.T+7.95e4T2 |
| 47 | 1−317.T+1.03e5T2 |
| 53 | 1+257.T+1.48e5T2 |
| 59 | 1+642.T+2.05e5T2 |
| 61 | 1+662.T+2.26e5T2 |
| 67 | 1−597.T+3.00e5T2 |
| 71 | 1+500.T+3.57e5T2 |
| 73 | 1−989.T+3.89e5T2 |
| 79 | 1+517.T+4.93e5T2 |
| 83 | 1+605.T+5.71e5T2 |
| 89 | 1+1.51e3T+7.04e5T2 |
| 97 | 1−742.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.855298369238887270457962807610, −8.368788313502090377075880932202, −7.58631022200336632697029538722, −6.28511906109972511700367694204, −5.84508362651120888937787002222, −4.69339257953013455333637222275, −3.82862202276236538551606746883, −2.45817011220563662751963284146, −1.57940059891343308903227160333, 0,
1.57940059891343308903227160333, 2.45817011220563662751963284146, 3.82862202276236538551606746883, 4.69339257953013455333637222275, 5.84508362651120888937787002222, 6.28511906109972511700367694204, 7.58631022200336632697029538722, 8.368788313502090377075880932202, 8.855298369238887270457962807610