L(s) = 1 | + 1.46·3-s − 0.928·5-s − 7.60·7-s − 24.8·9-s − 35.0·11-s + 83.5·13-s − 1.35·15-s + 17·17-s + 115.·19-s − 11.1·21-s − 64.6·23-s − 124.·25-s − 75.9·27-s + 288.·29-s + 186.·31-s − 51.2·33-s + 7.06·35-s − 241.·37-s + 122.·39-s − 43.8·41-s − 257.·43-s + 23.0·45-s − 40.1·47-s − 285.·49-s + 24.8·51-s − 214.·53-s + 32.5·55-s + ⋯ |
L(s) = 1 | + 0.281·3-s − 0.0830·5-s − 0.410·7-s − 0.920·9-s − 0.960·11-s + 1.78·13-s − 0.0233·15-s + 0.242·17-s + 1.39·19-s − 0.115·21-s − 0.585·23-s − 0.993·25-s − 0.541·27-s + 1.84·29-s + 1.07·31-s − 0.270·33-s + 0.0341·35-s − 1.07·37-s + 0.502·39-s − 0.167·41-s − 0.913·43-s + 0.0764·45-s − 0.124·47-s − 0.831·49-s + 0.0683·51-s − 0.557·53-s + 0.0797·55-s + ⋯ |
Λ(s)=(=(1088s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1088s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1−17T |
good | 3 | 1−1.46T+27T2 |
| 5 | 1+0.928T+125T2 |
| 7 | 1+7.60T+343T2 |
| 11 | 1+35.0T+1.33e3T2 |
| 13 | 1−83.5T+2.19e3T2 |
| 19 | 1−115.T+6.85e3T2 |
| 23 | 1+64.6T+1.21e4T2 |
| 29 | 1−288.T+2.43e4T2 |
| 31 | 1−186.T+2.97e4T2 |
| 37 | 1+241.T+5.06e4T2 |
| 41 | 1+43.8T+6.89e4T2 |
| 43 | 1+257.T+7.95e4T2 |
| 47 | 1+40.1T+1.03e5T2 |
| 53 | 1+214.T+1.48e5T2 |
| 59 | 1+585.T+2.05e5T2 |
| 61 | 1+331.T+2.26e5T2 |
| 67 | 1+819.T+3.00e5T2 |
| 71 | 1+961.T+3.57e5T2 |
| 73 | 1+342.T+3.89e5T2 |
| 79 | 1+513.T+4.93e5T2 |
| 83 | 1+270.T+5.71e5T2 |
| 89 | 1−728.T+7.04e5T2 |
| 97 | 1−211.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.922723032500498994338663390832, −8.276143122540459636571634658689, −7.65085262969733297581876114077, −6.34011601052226332631537881477, −5.81473190183912245583735541221, −4.74813342734349494891691899977, −3.40449090200445055138832119392, −2.93152195914184346028677183555, −1.40304645234449631957290531624, 0,
1.40304645234449631957290531624, 2.93152195914184346028677183555, 3.40449090200445055138832119392, 4.74813342734349494891691899977, 5.81473190183912245583735541221, 6.34011601052226332631537881477, 7.65085262969733297581876114077, 8.276143122540459636571634658689, 8.922723032500498994338663390832