Properties

Label 1088.4.a.n
Level $1088$
Weight $4$
Character orbit 1088.a
Self dual yes
Analytic conductor $64.194$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1088,4,Mod(1,1088)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1088, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1088.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1088.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1940780862\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 2) q^{3} + ( - 2 \beta + 6) q^{5} + (3 \beta - 18) q^{7} + ( - 4 \beta - 11) q^{9} + ( - 13 \beta + 10) q^{11} + (12 \beta + 42) q^{13} + (10 \beta - 36) q^{15} + 17 q^{17} + (38 \beta - 16) q^{19}+ \cdots + (103 \beta + 514) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 12 q^{5} - 36 q^{7} - 22 q^{9} + 20 q^{11} + 84 q^{13} - 72 q^{15} + 34 q^{17} - 32 q^{19} + 144 q^{21} + 44 q^{23} - 82 q^{25} + 56 q^{27} + 396 q^{29} + 116 q^{31} - 352 q^{33} - 360 q^{35}+ \cdots + 1028 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −5.46410 0 12.9282 0 −28.3923 0 2.85641 0
1.2 0 1.46410 0 −0.928203 0 −7.60770 0 −24.8564 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1088.4.a.n 2
4.b odd 2 1 1088.4.a.p 2
8.b even 2 1 136.4.a.a 2
8.d odd 2 1 272.4.a.f 2
24.f even 2 1 2448.4.a.z 2
24.h odd 2 1 1224.4.a.d 2
136.h even 2 1 2312.4.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.4.a.a 2 8.b even 2 1
272.4.a.f 2 8.d odd 2 1
1088.4.a.n 2 1.a even 1 1 trivial
1088.4.a.p 2 4.b odd 2 1
1224.4.a.d 2 24.h odd 2 1
2312.4.a.b 2 136.h even 2 1
2448.4.a.z 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1088))\):

\( T_{3}^{2} + 4T_{3} - 8 \) Copy content Toggle raw display
\( T_{5}^{2} - 12T_{5} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$5$ \( T^{2} - 12T - 12 \) Copy content Toggle raw display
$7$ \( T^{2} + 36T + 216 \) Copy content Toggle raw display
$11$ \( T^{2} - 20T - 1928 \) Copy content Toggle raw display
$13$ \( T^{2} - 84T + 36 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 32T - 17072 \) Copy content Toggle raw display
$23$ \( T^{2} - 44T - 7016 \) Copy content Toggle raw display
$29$ \( T^{2} - 396T + 31092 \) Copy content Toggle raw display
$31$ \( T^{2} - 116T - 13064 \) Copy content Toggle raw display
$37$ \( T^{2} - 140T - 92300 \) Copy content Toggle raw display
$41$ \( T^{2} + 60T + 708 \) Copy content Toggle raw display
$43$ \( T^{2} + 640T + 98512 \) Copy content Toggle raw display
$47$ \( T^{2} + 496T + 18304 \) Copy content Toggle raw display
$53$ \( T^{2} + 236T + 4516 \) Copy content Toggle raw display
$59$ \( T^{2} + 576T - 5808 \) Copy content Toggle raw display
$61$ \( T^{2} - 348T - 225516 \) Copy content Toggle raw display
$67$ \( T^{2} + 1528 T + 580624 \) Copy content Toggle raw display
$71$ \( T^{2} + 876T - 81768 \) Copy content Toggle raw display
$73$ \( T^{2} + 380T + 12868 \) Copy content Toggle raw display
$79$ \( T^{2} - 172T - 351752 \) Copy content Toggle raw display
$83$ \( T^{2} - 1024 T - 350768 \) Copy content Toggle raw display
$89$ \( T^{2} + 844 T - 1144604 \) Copy content Toggle raw display
$97$ \( T^{2} - 36T - 37308 \) Copy content Toggle raw display
show more
show less